What makes a function quasi-linear?

  • Thread starter Thread starter newphysist
  • Start date Start date
Click For Summary
The function f = min(1/2, x, x^2) is identified as quasi-linear because it is both quasi-convex and quasi-concave. The reasoning behind its lack of concavity is correct; specifically, it is not concave on the interval (0, 1/√2) due to the segment where f = x^2, which is convex. Additionally, the function is monotonic, and all monotonic functions are considered quasi-linear. Understanding these properties clarifies the function's classification. Overall, the discussion emphasizes the conditions that define quasi-linearity in mathematical functions.
newphysist
Messages
12
Reaction score
0
Hi,

I have two questions.

(1) I am trying to understand how the following function is quasi-linear:

Code:
f = min(1/2,x,x^2)

For it to be quasi linear it has to be quasi convex and quasi concave at same time.

(2) I think the reason the above function is not concave is cause on a certain interval (0,1) f = x^2 which is convex. Am I correct in my reasoning?

Thanks guys
 
Mathematics news on Phys.org
What is the domain of your function?
 
Real numbers R
 
newphysist said:
(1) I am trying to understand how the following function is quasi-linear:
Code:
f = min(1/2,x,x^2)
For it to be quasi linear it has to be quasi convex and quasi concave at same time.
Yes. Which it is.
(2) I think the reason the above function is not concave is cause on a certain interval (0,1) f = x^2 which is convex. Am I correct in my reasoning?
Yes, though it would be more accurate to observe that on (0, 1/√2) it is not concave. (min{.5, x/2, x} would have been concave.)
 
This function is monotonic. And every monotonic function is quasilinear.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
410
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K