hi, i know a little bit of ODE but not much about PDE,Some math programs give me the solution but I would like to know what methods they use.(adsbygoogle = window.adsbygoogle || []).push({});

The problem is the following:

$$I(a,b) = \int_{0}^{\infty} e^{-ax^{2}-\frac{b}{x^2}}$$

through differentiation under the integral sign, substitution and integration by parts, we can find this properties.

$$I(a,b) = -\sqrt{\frac{b}{a}}\, \left ( \frac{\partial }{\partial b}I(a,b) \right )=-\frac{2a}{1+2\sqrt{ab}} \left ( \frac{\partial }{\partial a} I(a,b)\right )$$

and the condition

$$I(a,0) = \frac{1}{2}\sqrt{\frac{\pi }{a}}$$

then using a softfware:

$$I(a,b) = -\sqrt{\frac{b}{a}}\, \left ( \frac{\partial }{\partial b}I(a,b) \right )$$

$$I(a,b) = f(a)\, e^{-2\sqrt{ab}}$$

now with the other equation

$$I(a,b) = -\frac{2a}{1+2\sqrt{ab}} \left ( \frac{\partial }{\partial a} I(a,b)\right )$$

$$I(a,b) = g(b)\, \frac{e^{-2\sqrt{ab}}}{\sqrt{a}}$$

comparing the 2 equations and considering the condition I(a,0) we get

$$I(a,b) = \frac{\sqrt{\pi}}{2} \frac{e^{-2\sqrt{ab}}}{\sqrt{a}}$$

To fully understand the development, I would like to know what methods use the program to solve the 2 pde

thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I What method can be used to solve this pde?

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**