MHB What percentage of the class scored between a 67% and an 83%

  • Thread starter Thread starter anyalong18
  • Start date Start date
  • Tags Tags
    Class
anyalong18
Messages
4
Reaction score
0
The exam scores for a particularly difficult math test had a mean score of 75% with a standard deviation of 8%. Approximately what percentage of the class scored between a 67% and an 83%.
 
Mathematics news on Phys.org
Assuming this is a normal distribution, these scores are each within one standard deviation from the mean, so the percentage is...?
 
I'm sure you know, if you are taking a course in which a question like this is asked, that you do NOT "calculate" the answer but look it up in a table of the "Standard Normal Distributio". Surely there must be one in your textbook but there are also several on line.

There is a good one at normal distribution table - Bing images

The standard normal distribution has mean 0 and standard deviation 1. With mean 75 and standard distribution 8, (x- 75)/8 corresponds to x.

So a score of 67 corresponds to (67- 75)/8=-8/8= -1 and a score of 83 corresponds to (83- 75)/8= 8/8= 1.

Those scores are, as Prove It said, one standard deviation off the mean. In the table, you look up z= 1 and, because of the symmetry, the "z-score" for -1 is the negative of that. x- (-x)= 2x so the probability is just 2 times the value you looked up.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top