What was the least number of coins that could have been stolen?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The least number of coins that could have been stolen is 3930, determined using the Chinese Remainder Theorem. The equations derived were x ≡ 3 (mod 17), x ≡ 10 (mod 16), and x ≡ 0 (mod 15). The calculations involved finding the values of N1, N2, and N3, leading to the final result through modular arithmetic. A correction was noted regarding the calculation of x2, clarifying that x2 ≡ 15 (mod 16) is accurate.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with the Chinese Remainder Theorem
  • Basic knowledge of congruences
  • Ability to perform calculations with modular equations
NEXT STEPS
  • Study the Chinese Remainder Theorem in depth
  • Practice solving modular equations
  • Explore applications of modular arithmetic in cryptography
  • Learn about advanced number theory concepts related to congruences
USEFUL FOR

Mathematicians, students studying number theory, educators teaching modular arithmetic, and anyone interested in solving congruences and applying the Chinese Remainder Theorem.

Math100
Messages
817
Reaction score
230
Homework Statement
(Ancient Chinese Problem.) A band of ## 17 ## pirates stole a sack of gold coins. When they tried to divide the fortune into equal portions, ## 3 ## coins remained. In the ensuing brawl over who should get the extra coins, one pirate was killed. The wealth was redistributed, but this time an equal division left ## 10 ## coins. Again an argument developed in which another pirate was killed. But now the total fortune was evenly distributed among the survivors. What was the least number of coins that could have been stolen?
Relevant Equations
None.
Let ## x ## be the least number of coins that could have been stolen.
Then ## x\equiv 3\pmod {17}, x\equiv 10\pmod {16} ##, and ## x\equiv 0\pmod {15} ##.
Applying the Chinese Remainder Theorem produces:
## n=17\cdot 16\cdot 15=4080 ##.
This means ## N_{1}=\frac{4080}{17}=240, N_{2}=\frac{4080}{16}=255 ## and ## N_{3}=\frac{4080}{15}=272 ##.
Observe that
\begin{align*}
&240x_{1}\equiv 1\pmod {17}\implies 2x_{1}\equiv 1\pmod {17}\\
&\implies 18x_{1}\equiv 9\pmod {17}\implies x_{1}\equiv 9\pmod {17},\\
&255x_{2}\equiv 1\pmod {16}\implies -x_{2}\equiv 1\pmod {16}\\
&\implies x_{2}\equiv -15\pmod {16}\implies x_{2}\equiv 15\pmod {16},\\
&272x_{3}\equiv 1\pmod {15}\implies 2x_{3}\equiv 1\pmod {15}\\
&\implies 16x_{3}\equiv 8\pmod {15}\implies x_{3}\equiv 8\pmod {15}.\\
\end{align*}
Now we have ## x_{1}=9, x_{2}=15 ## and ## x_{3}=8 ##.
Thus ## x\equiv (9\cdot 3\cdot 240+15\cdot 10\cdot 255+0)\pmod {4080}\equiv 44730\pmod {4080}\equiv 3930\pmod {4080} ##.
Therefore, the least number of coins that could have been stolen is ## 3930 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: (Ancient Chinese Problem.) A band of ## 17 ## pirates stole a sack of gold coins. When they tried to divide the fortune into equal portions, ## 3 ## coins remained. In the ensuing brawl over who should get the extra coins, one pirate was killed. The wealth was redistributed, but this time an equal division left ## 10 ## coins. Again an argument developed in which another pirate was killed. But now the total fortune was evenly distributed among the survivors. What was the least number of coins that could have been stolen?
Relevant Equations:: None.

Let ## x ## be the least number of coins that could have been stolen.
Then ## x\equiv 3\pmod {17}, x\equiv 10\pmod {16} ##, and ## x\equiv 0\pmod {15} ##.
Applying the Chinese Remainder Theorem produces:
## n=17\cdot 16\cdot 15=4080 ##.
This means ## N_{1}=\frac{4080}{17}=240, N_{2}=\frac{4080}{16}=255 ## and ## N_{3}=\frac{4080}{15}=272 ##.
Observe that
\begin{align*}
&240x_{1}\equiv 1\pmod {17}\implies 2x_{1}\equiv 1\pmod {17}\\
&\implies 18x_{1}\equiv 9\pmod {17}\implies x_{1}\equiv 9\pmod {17},\\
&255x_{2}\equiv 1\pmod {16}\implies -x_{2}\equiv 1\pmod {16}\\
&\implies x_{2}\equiv -15\pmod {16}\implies x_{2}\equiv 15\pmod {16},\\
&272x_{3}\equiv 1\pmod {15}\implies 2x_{3}\equiv 1\pmod {15}\\
&\implies 16x_{3}\equiv 8\pmod {15}\implies x_{3}\equiv 8\pmod {15}.\\
\end{align*}
Now we have ## x_{1}=9, x_{2}=15 ## and ## x_{3}=8 ##.
Thus ## x\equiv (9\cdot 3\cdot 240+15\cdot 10\cdot 255+0)\pmod {4080}\equiv 44730\pmod {4080}\equiv 3930\pmod {4080} ##.
Therefore, the least number of coins that could have been stolen is ## 3930 ##.
Correct, except for one step. You have ##255x_{2}\equiv 1\pmod {16}\implies -x_{2}\equiv 1\pmod {16}##. Then multiplication with ##-1## yields ##x_2\equiv -1 \equiv 15 \pmod{16}.## This would be correct, but the step in between ##\implies x_{2}\equiv -15\pmod {16}## is not. If we had a single number with remainder ##-1## and ##-15## modulo ##16##, then ##-1-(-15)=14 \equiv 0 \pmod{16}## which is a contradiction.
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Correct, except for one step. You have ##255x_{2}\equiv 1\pmod {16}\implies -x_{2}\equiv 1\pmod {16}##. Then multiplication with ##-1## yields ##x_2\equiv -1 \equiv 15 \pmod{16}.## This would be correct, but the step in between ##\implies x_{2}\equiv -15\pmod {16}## is not. If we had a single number with remainder ##-1## and ##-15## modulo ##16##, then ##-1-(-15)=14 \equiv 0 \pmod{16}## which is a contradiction.
Yes, thank you for pointing that out. I was wrong about that.
 
Math100 said:
Yes, thank you for pointing that out. I was wrong about that.
I only wanted to ensure you that I actually checked your proof. :biggrin:
 
  • Love
Likes   Reactions: Math100

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K