Hi everyone, I'm currently taking an abstract Algebra course and need a little guidance with an analysis of solving a system of linear equations.(adsbygoogle = window.adsbygoogle || []).push({});

We are given two linear equations and need to solve for x and y using the method of "substitution" and again using "elimination". However, we must provide theorems and properties explaining each step. I have no problem solving the system, i'm just having difficulty citing the properties used.

Here is the system, which yields one solution (3, 2).

x + y = 5

x - y = 1

We first need to determine the appropriate algebraic structure in which we are solving the system: either a group, ring, field, or integral domain.

We were told that for solving something like x + 2 = 5 (with one variable) we would be in a "group" <Z,+> where + is the normal binary op of addition in Z.

Our text defines a "group" as having only one binary operation, while defining a "ring" as having two binary operations (addition and multiplication). We are then given the definitions of "field" and "integral domain" which seem to be special cases of a ring... So when solving the system x + y = 5 and x - y = 1 for x and y, would i then be in a "ring" since we have mult and addition? Would i be in the ring <Z,+,x> with the usual ops of addition and mult in Z? Or would i be in the reals? Or am i not even in a ring but rather a field or integral domain?

Next, we need to determine which properties and theorems i'll be using to solve the system. But since i can't determine whether we're in a group, ring, field or integral domain, i don't know which properties to cite.

We were told that when asked to solve for x in something like x + 2 = 5 we would use the theorem: For elements a and b in a group <G,*> if we are given that a=b, then for any c in G that a*c=b*c.

which when applied to solving for x, would let us do (x+2)+(-2)=5+(-2) which results in x+(2+(-2))=5+(-2) since addition is associative in G, which gives us x+0=3 since the additive ID in the group Z is 0, which gives us the answer x=3 using the definition of additive inverse and the definition of + in Z.

But how do i write something like this for solving the system of two linear equations with two variables x and y: x + y = 5 and x - y = 1?

I want to use the addition property of equality: (If a=b and c=d then a+c=b+d) but i'm not sure if this is of a group, ring, field, etc...

Can anyone tell me if i'm going in the right direction? Am i OK by saying i'd be in the ring <Z,+,x> with the usual ops of addition and mult in Z when solving for x and y in a system? Thanks in advance for any insight!

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# When solving a linear system for x and y, am i in a group? ring? field?

Loading...

Similar Threads - solving linear system | Date |
---|---|

I Solving System of Equations w/ Gauss-Jordan Elimination | Sep 18, 2017 |

I Solving a system of linear equations using back substitution | Aug 30, 2017 |

How to solve a very large overdetermined system numerically? | May 8, 2015 |

To Interpret Solving Systems of Linear Equations Geometrically in Terms of Linear Alg | Nov 4, 2012 |

Help solving a linear system | Sep 24, 2012 |

**Physics Forums - The Fusion of Science and Community**