MHB Which is Greater: $\log_{10}12$ or $(\log_{10}5)^2+(\log_{10}7)^2$?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around comparing the values of $\log_{10}12$ and $(\log_{10}5)^2 + (\log_{10}7)^2$. Participants are encouraged to provide reasoning for their conclusions. The hint suggests that using a calculator can expedite finding the answer. Ultimately, the goal is to determine which expression yields a greater value. The conversation emphasizes the importance of mathematical reasoning in arriving at the correct conclusion.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
State with reason which of these is greater?

$\log_{10}12$ or $(\log_{10}5)^2+(\log_{10}7)^2$?
 
Mathematics news on Phys.org
anemone said:
State with reason which of these is greater?

$\log_{10}12$ or $(\log_{10}5)^2+(\log_{10}7)^2$?

Hint:

Extended Cauchy-Schwarz Inequality
 
My calculator was faster. (Yes)

-Dan
 
anemone said:
State with reason which of these is greater?

$\log_{10}12$ or $(\log_{10}5)^2+(\log_{10}7)^2$?

My solution:

Note that by using the extended Cauchy-Schwarz inequality, we have

$\dfrac{(\log_{10}5)^2}{1}+\dfrac{(\log_{10}7)^2}{1}\ge \dfrac{(\log_{10}5+\log_{10}7)^2}{1+1}=\dfrac{(\log_{10}35)^2}{2}$

But we know $35^2=1225>10^3$, so $\log_{10}35>\dfrac{3}{2}$ and therefore $\dfrac{(\log_{10}35)^2}{2}>\dfrac{9}{8}$.

If we can prove $\dfrac{9}{8}>\log_{10} 12$, then we can conclude $(\log_{10}5)^2+(\log_{10}7)^2>\log_{10}12$.

Observe that $10^3=1000>864=\dfrac{12^3}{2}$, so we get $10^9>\dfrac{12^9}{8}$, since $\dfrac{12^9}{8}>12^8$, we have proved $10^9>12^8$, i.e. $\dfrac{9}{8}>\log_{10} 12$.

Therefore, $\dfrac{(\log_{10}5)^2}{1}+\dfrac{(\log_{10}7)^2}{1}\ge\dfrac{(\log_{10}35)^2}{2}\ge\dfrac{9}{8}>\log_{10} 12$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K