Which isosceles triangle with a given perimeter has the greatest area?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on a mathematical problem regarding isosceles triangles with a fixed perimeter, specifically demonstrating that the triangle with the greatest area is equilateral. Participants shared their solutions, with notable contributions from members like BAdhi and anemone, who effectively applied Heron's formula in their explanations. The problem sparked engagement from multiple forum members, highlighting collaborative problem-solving in mathematics. The solutions provided reinforce the concept of maximizing area within geometric constraints. Overall, the discussion emphasizes the relationship between triangle types and area optimization.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Show that of all the isosceles triangles with a given perimeter, the one with the greatest area is an equilateral triangle.

-----

 
Physics news on Phys.org
This week's problem was correctly answered by the following members:

Ackbach
anemone
BAdhi
Barioth
MarkFL
Sudharaka

You can find BAdhi's solution below:

If $a$,$b$,$b$ are the sides of the isosceles triangle, the height of the triangle $h$ would be,$$h=\sqrt{b^2-\left(\frac a 2\right)^2}$$
The perimeter $C$ and the area $A$ are given as,
$$C=a+2b\qquad (1)$$
$$A=\frac{a\times h}{2}=\frac{a\times \sqrt{b^2-\left(\frac a 2\right)^2}}{2}=\frac{a\sqrt{4b^2-a^2}}{4}$$
From (1),
$$\begin{align*}
A&=\frac{a\sqrt{4\left(\frac{C-a}{2}\right)^2-a^2}}{4}\\
&=\frac{a\sqrt{(C-a)^2-a^2}}{4}\\
&=\frac{a\sqrt{(C-a+a)(C-a-a)}}{4}\\
&=\frac{a\sqrt{C(C-2a)}}{4}\\
&=\frac{\sqrt{C(Ca^2-2a^3)}}{4}
\end{align*}$$
$$A^2=\frac{C(Ca^2-2a^3)}{16}$$
by differentiating with respect to a,
$$\begin{align*}
2A\frac{dA}{da}&=\frac{C(2aC-6a^2)}{16}\\
\frac{dA}{da}&=\frac{C(2aC-6a^2)}{32A}
\end{align*}$$
To find max/min $\frac{dA}{da}=0$
$$\frac{2aC-6a^2}{32A}=0$$
since $A>0$,
$$\begin{align*}
2aC-6a^2&=0\\
a(C-3a)&=0\\
a&=\frac{C}{3} \quad (\text{since $a\not=0$})
\end{align*}$$
by taking, second derivative,
$$2\left(\frac{dA}{da}\right)^2+2A\frac{d^2A}{da^2}=\frac{2C-12a}{16}$$
when $\frac{dA}{da}=0$, $a=\frac{C}{3}$
$$\begin{align*}
2(0)+2A\left(\frac{d^2A}{da^2}\right)_{a=\frac{C}{3}}&=\frac{C-2C}{8}\\
\left(\frac{d^2A}{da^2}\right)_{a=\frac{C}{3}}&= \frac{-C}{16A}\\
\end{align*}$$
with $\text{$C>0$ and $ A>0$}$
$$\left(\frac{d^2A}{da^2}\right)_{a=\frac{C}{3}}<0$$
Therefore the point $a=\frac{C}{3}$ is a maximum.
Therefore the area becomes maximum when $a=\frac{C}{3}$
from (1),
$$3a=a+2b\implies a=b$$
therefore the area of the isosceles triangle becomes maximum when when the triangle is an equilateral triangle with a given constant perimeter

I'm also going to post anemone's solution since it nicely utilizes Heron's formula.

By using the Heron's formula to find the area (A) of any isosceles triangle with sides a, a, and b with a given perimeter, says P, we have:

$\displaystyle A= \sqrt {\frac{p}{2}\cdot (\frac{p}{2}-a)^2\cdot(\frac{p}{2}-b)^2} $ (*)

Since $\displaystyle p=a+a+b$, we rewrite it to make b the subject and obtain $\displaystyle b=p-2a$. We then substitute it to the equation (*) and this gives:

$\displaystyle A= \sqrt {\frac{p}{2}\cdot (\frac{p}{2}-a)^2\cdot(\frac{p}{2}-(p-2a))^2} $

Further simplification yields

$\displaystyle A= \sqrt {\frac{p}{2}\cdot(2a^3-\frac{5pa^2}{2}+p^2a-\frac{p^3}{8} )} $

Now, if we let $\displaystyle y=2a^3-\frac{5pa^2}{2}+p^2a-\frac{p^3}{8} $, we see that if we maximize y, we will also maximize A at the same time.

Proceed to maximize y using differentiation method, we have:

$\displaystyle y'=6a^2-5pa+p^2=(3a-p)(2a-p) $

i.e. $\displaystyle y'=0$ iff $\displaystyle a=\frac{p}{2}$ or $\displaystyle a=\frac{p}{3}$.

Second derivative test $\left(\displaystyle y''=12a-5p=12(\frac{p}{3})-5p=-p \right)$ tells us y is maximum when $\displaystyle a=\frac{p}{3}$.

Therefore, A is also maximum when $\displaystyle a=\frac{p}{3}$, i.e. $\displaystyle p=3a$ or $\displaystyle b=a$ or if the triangle is an equilateral triangle.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K