MHB Why Are Holomorphic Mappings on Compact Riemann Surfaces Constant?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Show that the holomorphic mappings on a compact connected Riemann surface are constant.

-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
The proof is made simple by applying the open mapping theorem for Riemann surfaces. Let $X$ be a compact connected Riemann surface, and let $f : X\to \Bbb C$ be a holomorphic mapping. By the open mapping theorem, $f(X)$ is open in $\Bbb C$. Since $f$ is continuous and $X$ is compact, $f(X)$ is a compact, hence closed, subset of $\Bbb C$. As $f(X)$ is a nonempty, open and closed subset of the connected set $\Bbb C$, $f(X) = C$. This is a contradiction since $\Bbb C$ is not compact.
 
Back
Top