A Why Are the Peaks at Δ = 0 and Δ = ω_m Equally High?

LionCereals
Messages
1
Reaction score
0
TL;DR Summary
How can I explain the average occupation numbers of a coupled cavity-mirror system?
I am considering the following Hamiltonian:
$$H = -\Delta a^{\dagger}a + \omega_m b^{\dagger}b + g_0 * a^{\dagger}a (b + b^{\dagger})$$
which is the interaction picture optomechanical Hamiltonian for a cavity with movable end mirror. The mirror vibrations are quantized, leading to phonons that are annihilated / created using ##b, b^{\dagger}##. Photons in one cavity mode are created with ##a^{\dagger}##.

I have plotted the steady-state solution for the average photon number in the cavity, ##n_C##, and the average phonon number in the mirror, ##n_M## as a function of detuning. For this, I used QUTIP and obtained, with the y-axis on log scale (see attachment).This is the typical Lorentzian resonance curve. Now, we clearly see that there are peaks corresponding to ##\Delta = \omega_m$## and ##\Delta = 0##.
I understand the peak at ##\Delta = 0## as then there are lots of photons inside the cavity, so we have a high average photon number and thus a high effective coupling to the mirror, as ##g_0 * n_a## is large.

What I don't understand, however, is why the second peak at ##+\omega_m## is as high as the first peak. Clearly there, we have ##\omega_{in} = \omega_C + \omega_m##, such that the photon - phonon scattering process is resonant. But why has it the same height?

From what I see, if we have (on average) as many phonons in the mirror at ##\Delta = \omega_m## as at ##\Delta = 0##, then the effective coupling strength at both detunings should be equal. But clearly, in the former case there are less photons in the cavity, as they are not resonant with the cavity frequency?
 

Attachments

  • HW2_3_3b_final.png
    HW2_3_3b_final.png
    13.1 KB · Views: 154
Physics news on Phys.org
LionCereals said:
I am considering the following Hamiltonian:
$$H = -\Delta a^{\dagger}a + \omega_m b^{\dagger}b + g_0 * a^{\dagger}a (b + b^{\dagger})$$
which is the interaction picture optomechanical Hamiltonian for a cavity with movable end mirror.
May I know where did you find this Hamiltonian? Would you cite the paper/book?
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top