Why did I lose 60% on my proof of Generalized Vandermonde's Identity?

  • #1
12john
11
1
My tests are submitted and marked anonymously. I got a 2/5 on the following, but the grader wrote no feedback besides that more detail was required. What details could I have added? How could I perfect my proof?
Prove Generalized Vandermonde's Identity, solely using a story proof or double counting. DON'T prove using algebra or induction — if you do, you earn zero marks.

$$\sum\limits_{k_1+\cdots +k_p = m} {n_1\choose k_1} {n_2\choose k_2} \cdots {n_p\choose k_p} = { n_1+\dots +n_p \choose m }.$$

Beneath is my proof graded 2/5.
I start by clarifying that the summation ranges over all lists of NONnegative integers ##(k_1,k_2,\dots,k_p)## for which ##k_1 + \dots + k_p = m##. These ##k_i## integers are NONnegative, because this summation's addend or argument contains ##\binom{n_i}{k_i}##.

On the LHS, you choose ##k_1## elements out of a first set of ##n_1## elements; then ##k_2## out of another set of ##n_2## elements, and so on, through ##p## such sets — until you've chosen a total of ##m## elements from the ##p## sets.

Thus, on the LHS, you are choosing ##m## elements out of ##n_1+\dots +n_p##, which is exactly the RHS. Q.E.D.
 
Last edited:

Answers and Replies

  • #2
36,251
13,309
Can't read the mind of the person who graded it, but you could have made clearer why (or at least mention that) the sum catches every possible way to select m elements. You only documented that every "element" of the LHS is part of the RHS, i.e. LHS <= RHS.
 
  • #3
fresh_42
Mentor
Insights Author
2022 Award
17,655
18,377
I miss a comment on the summation. And the product is only implicitly explained. Where is the double counting? I would have expected an argument ##\sum \ldots = ?## but you have looked at the RHS and reasoned from there instead of the other way around.
 
  • #4
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
15,765
2,406
To put what the others said in another way, the way I read your proof, you seem to be saying
$$\binom{n_1}{k_1}\binom{n_2}{k_2} \cdots \binom{n_p}{k_p} = \binom{n_1+\cdots+n_p}{m}$$ as long as ##m=k_1+\cdots+k_p##.
 

Suggested for: Why did I lose 60% on my proof of Generalized Vandermonde's Identity?

  • Last Post
Replies
2
Views
242
Replies
2
Views
364
Replies
13
Views
575
Replies
2
Views
303
  • Last Post
Replies
0
Views
460
Replies
11
Views
634
Replies
1
Views
356
  • Last Post
Replies
2
Views
468
Replies
34
Views
2K
Replies
8
Views
758
Top