MHB Why Do Different Calculations of a Probability Problem Yield Different Results?

  • Thread starter Thread starter schinb65
  • Start date Start date
Click For Summary
The discussion centers on calculating the probability that a randomly chosen person owns either an automobile or a house, but not both, based on survey data. The correct answer is determined to be 0.5, which can be confirmed using both a Venn Diagram and the probability formula. The formula used is \(P[A \cup B] - P[A \cap B]\), which simplifies to \(P[A] + P[B] - 2P[A \cap B]\). Participants confirm that both methods yield the same result of 0.5, validating the calculations. Understanding the correct application of the probability formula is essential for accurate results.
schinb65
Messages
12
Reaction score
0
A marketing survey indicates that 60% of the population owns
an automobile, 30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile or a house, but not
both.

I am Told that the answer is .5, I did this problem 2 different ways and I received different answers, and .5 is one of the answers.

If I draw a Venn Diagram I receive .5 and that makes sense.
I also tried this, \(P[A\cup B]=P[A]+P-P[A \cap B]\),
I assume that I have something incorrect in the formula since I do not get the right answer. Would I be able to use this formula?
 
Mathematics news on Phys.org
Welcome to MHB, schinb65!

schinb65 said:
A marketing survey indicates that 60% of the population owns
an automobile, 30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile or a house, but not
both.

I am Told that the answer is .5, I did this problem 2 different ways and I received different answers, and .5 is one of the answers.

If I draw a Venn Diagram I receive .5 and that makes sense.
I also tried this, \(P[A\cup B]=P[A]+P-P[A \cap B]\),
I assume that I have something incorrect in the formula since I do not get the right answer. Would I be able to use this formula?


A Venn Diagram is best. ;)

But yes, you can also use that formula.
\begin{aligned}
P[\text{A or B but not both}] &= P[A\cup B]-P[A \cap B] \\
&=\big(P[A]+P-P[A \cap B]\big)-P[A \cap B] \\
&=P[A]+P-2P[A \cap B] \\
&=60\%+30\%-2\times 20\% \\
&=50\% \\
\end{aligned}
 

Similar threads

Replies
13
Views
2K
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K