MHB Why Do Different Calculations of a Probability Problem Yield Different Results?

  • Thread starter Thread starter schinb65
  • Start date Start date
schinb65
Messages
12
Reaction score
0
A marketing survey indicates that 60% of the population owns
an automobile, 30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile or a house, but not
both.

I am Told that the answer is .5, I did this problem 2 different ways and I received different answers, and .5 is one of the answers.

If I draw a Venn Diagram I receive .5 and that makes sense.
I also tried this, \(P[A\cup B]=P[A]+P-P[A \cap B]\),
I assume that I have something incorrect in the formula since I do not get the right answer. Would I be able to use this formula?
 
Mathematics news on Phys.org
Welcome to MHB, schinb65!

schinb65 said:
A marketing survey indicates that 60% of the population owns
an automobile, 30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile or a house, but not
both.

I am Told that the answer is .5, I did this problem 2 different ways and I received different answers, and .5 is one of the answers.

If I draw a Venn Diagram I receive .5 and that makes sense.
I also tried this, \(P[A\cup B]=P[A]+P-P[A \cap B]\),
I assume that I have something incorrect in the formula since I do not get the right answer. Would I be able to use this formula?


A Venn Diagram is best. ;)

But yes, you can also use that formula.
\begin{aligned}
P[\text{A or B but not both}] &= P[A\cup B]-P[A \cap B] \\
&=\big(P[A]+P-P[A \cap B]\big)-P[A \cap B] \\
&=P[A]+P-2P[A \cap B] \\
&=60\%+30\%-2\times 20\% \\
&=50\% \\
\end{aligned}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top