MHB Why Do Different Calculations of a Probability Problem Yield Different Results?

  • Thread starter Thread starter schinb65
  • Start date Start date
AI Thread Summary
The discussion centers on calculating the probability that a randomly chosen person owns either an automobile or a house, but not both, based on survey data. The correct answer is determined to be 0.5, which can be confirmed using both a Venn Diagram and the probability formula. The formula used is \(P[A \cup B] - P[A \cap B]\), which simplifies to \(P[A] + P[B] - 2P[A \cap B]\). Participants confirm that both methods yield the same result of 0.5, validating the calculations. Understanding the correct application of the probability formula is essential for accurate results.
schinb65
Messages
12
Reaction score
0
A marketing survey indicates that 60% of the population owns
an automobile, 30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile or a house, but not
both.

I am Told that the answer is .5, I did this problem 2 different ways and I received different answers, and .5 is one of the answers.

If I draw a Venn Diagram I receive .5 and that makes sense.
I also tried this, \(P[A\cup B]=P[A]+P-P[A \cap B]\),
I assume that I have something incorrect in the formula since I do not get the right answer. Would I be able to use this formula?
 
Mathematics news on Phys.org
Welcome to MHB, schinb65!

schinb65 said:
A marketing survey indicates that 60% of the population owns
an automobile, 30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile or a house, but not
both.

I am Told that the answer is .5, I did this problem 2 different ways and I received different answers, and .5 is one of the answers.

If I draw a Venn Diagram I receive .5 and that makes sense.
I also tried this, \(P[A\cup B]=P[A]+P-P[A \cap B]\),
I assume that I have something incorrect in the formula since I do not get the right answer. Would I be able to use this formula?


A Venn Diagram is best. ;)

But yes, you can also use that formula.
\begin{aligned}
P[\text{A or B but not both}] &= P[A\cup B]-P[A \cap B] \\
&=\big(P[A]+P-P[A \cap B]\big)-P[A \cap B] \\
&=P[A]+P-2P[A \cap B] \\
&=60\%+30\%-2\times 20\% \\
&=50\% \\
\end{aligned}
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top