Why do we differentiate in physics and why twice?

Click For Summary
SUMMARY

This discussion clarifies the necessity of differentiation and integration in physics, particularly in the context of quantum mechanics. The first derivative of the wave function, represented as $$\psi(x)=\exp(-\omega x^2/2)$$, indicates the rate of change along the X-axis, while the second derivative reveals how this rate itself changes. These derivatives are crucial for understanding momentum and kinetic energy, as they relate to the Hamilton operator $$\hat{H}$$ and the evolution of quantum states as governed by Schrödinger's equation.

PREREQUISITES
  • Understanding of basic calculus, specifically differentiation and integration.
  • Familiarity with quantum mechanics concepts, including wave functions and operators.
  • Knowledge of Schrödinger's equation and its implications in quantum physics.
  • Basic grasp of harmonic oscillators and their mathematical representations.
NEXT STEPS
  • Study the application of the chain rule in calculus, particularly in the context of wave functions.
  • Learn about the Hamiltonian operator and its role in quantum mechanics.
  • Explore the significance of eigenfunctions and eigenvalues in quantum systems.
  • Investigate the relationship between derivatives and physical quantities such as momentum and kinetic energy.
USEFUL FOR

Students and professionals in physics, particularly those focusing on quantum mechanics, as well as educators seeking to explain the mathematical foundations of physical concepts.

Physou
Messages
17
Reaction score
0
I have a basic understanding of the reason why we look for derivative or integration in Physics, based on the water flow example, where integration is the process of accumulating the varying water flow rate "2x" , while we reverse to the water flow rate by differentiating " x squared " the integral of 2x. So I understand that in general we differentiate when we know the integration, ie the cumulative effect of a function but we want to know the function ? am I right ? given my limited knowledge I don't understand why we differentiate ( and also why twice ? ) in the picture attached
psi.jpg
. I will be very grateful for any help with basic terms. Thank you !
 
Last edited:
Physics news on Phys.org
In this context, the first derivative tells you how fast ##\psi## would change as you move along the X axis. The second derivative quantifies the sense that ##\psi## changes "faster and faster" (or slower and slower) as you move along. These numbers happen to be important for quantum objects, because they are related to the momentum and kinetic energy. Their relationship (via Schroedinger's equation) governs how the object evolves in space and time, which in turn let's us predict the probabilities of various outcomes of mesurements/experiments.

This .. http://www.felderbooks.com/papers/psi.html .. is one of the many resources that I found useful when I was trying to understand this stuff.
 
Last edited:
Thank you so much for your explanation and also for the link .. there are many more hours of reading ahead of me !
 
First of all, this is an abuse of notation. A state ket doesn't depend on ##x##. It's the wave function, i.e., the position representation of the state ket that depends on ##x##:
$$\psi(x)=\langle x|\psi \rangle.$$
Now you have the wave function
$$\psi(x)=\exp(-\omega x^2/2),$$
and you take derivatives as usual. Your first derivative is correct. Using the chain rule you get
$$\psi'(x)=-\omega x \exp(-\omega x^2/2)=-\omega x \psi(x).$$
The 2nd derivative is then given by the product rule
$$\psi''(x)=-\omega \psi(x)-\omega x \psi'(x)=-\omega \psi(x)+\omega^2 x^2\psi(x).$$
So also your 2nd derivative is correct. So where is your problem?

In this case the motivation to do differentiation is that in the position representation, the momentum is represented by derivatives, i.e., (when using units with ##\hbar=1##)
$$\hat{p} \psi(x)=-\mathrm{i} \psi'(x).$$
The Hamilton operator of the harmonic oscillator is given by
$$\hat{H}=\frac{\hat{p}^2}{2m}+\frac{m \omega^2}{2} \hat{x}^2.$$
In the position reprsentation the position operator is just multplication with ##x##. Thus you get
$$\hat{H} \psi(x)=-\frac{1}{2m} \psi''(x)+\frac{m \omega^2}{2} x^2 \psi(x).$$
Now instead of the above used wave function, use
$$\Psi_0(x)=\exp \left (-\frac{m \omega x^2}{2} \right).$$
then you get
$$\hat{H} \Psi_0(x)=-\frac{1}{2m} [-m \omega \Psi_0+m^2 \omega^2 \Psi_0]+\frac{m \omega^2 x^2}{2} \Psi_0(x)=\frac{\omega}{2} \Psi_0(x),$$
which shows you that ##\Psi_0## is an eigenfunction of the Hamiltonian with eigenvalue ##\omega/2##. In fact, it's the ground state of the harmonic oscillator!
 
  • Like
Likes   Reactions: dlgoff

Similar threads

Replies
3
Views
821
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
2K
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K