MHB Why do we show in this way that it is not the image of the function?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Function Image
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Theorem:
No set is equinumerous with its power set.

Proof:

Let $A$ be a set. We want to show that if $f: A \to \mathcal{P}A$ (a random function) then $f$ is not surjective.We define the set $D=\{ x \in A: x \notin f(x)\}$ and obviously $D \in \mathcal{P}A$.

We assume that there is a $a \in A$ such that $f(a)=D$.Then we have:

$$a \notin D \leftrightarrow a \notin f(a) \leftrightarrow a \in D, \text{ contradiction}$$

Therefore for each $x \in A, f(x) \notin D$, i.e. $f$ is not surjective.Could you explain me the proof from the point where we assume that there is an $a \in A$ such that $f(a)=D$?We have show that $D \in \mathcal{P}A$ and we want to show that $D \notin f(A)$ in order to show that $\mathcal{P}A$ isn't the image of $f$.
Why do we do it like that? (Worried)
 
Physics news on Phys.org
I got it.. We want to show that $D \notin f(A)$.
So we suppose that $D \in f(A)$. That means that there is an $a \in A$ such that $f(a)=D$.

$$a \in D \leftrightarrow a \notin f(a) \leftrightarrow a \notin D$$

So we have found a contradiction..
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top