- #1
cianfa72
- 2,535
- 274
- TL;DR Summary
- About the integral involved in the definition of Karhunen–Loève theorem expansion random variable coefficients.
Hi,
in the Karhunen–Loève theorem's statement the random variables in the expansion are given by $$Z_k = \int_a^b X_te_k(t) \: dt$$
##X_t## is a zero-mean square-integrable stochastic process defined over a probability space ##(\Omega, F, P)## and indexed over a closed and bounded interval ##[a, b]##, with continuous covariance function ##K_X(s, t)##.
##e_k(t)## are elements of an orthonormal basis on ##L^2([a, b])## formed by the eigenfunctions of the linear operator ##T_{K_{X}}## with respective eigenvalues ##\lambda_k##. As explained here ##L^2([a, b])## is the Hilbert space of measurable square functions defined on the space ##([a,b], \mathcal B([a,b], P)## that have finite measure. Note that ##\mathcal B([a,b])## is the Borel ##\sigma##-algebra on the closed set ##[a,b]## and ##P## is the Lebesgue measure on it.
I'm confused about the meaning of the integral involved in the definition of random variables ##Z_k##
Which kind of integral is this ?
Ps. I asked the same question on MSE without luck.
in the Karhunen–Loève theorem's statement the random variables in the expansion are given by $$Z_k = \int_a^b X_te_k(t) \: dt$$
##X_t## is a zero-mean square-integrable stochastic process defined over a probability space ##(\Omega, F, P)## and indexed over a closed and bounded interval ##[a, b]##, with continuous covariance function ##K_X(s, t)##.
##e_k(t)## are elements of an orthonormal basis on ##L^2([a, b])## formed by the eigenfunctions of the linear operator ##T_{K_{X}}## with respective eigenvalues ##\lambda_k##. As explained here ##L^2([a, b])## is the Hilbert space of measurable square functions defined on the space ##([a,b], \mathcal B([a,b], P)## that have finite measure. Note that ##\mathcal B([a,b])## is the Borel ##\sigma##-algebra on the closed set ##[a,b]## and ##P## is the Lebesgue measure on it.
I'm confused about the meaning of the integral involved in the definition of random variables ##Z_k##
Which kind of integral is this ?
Ps. I asked the same question on MSE without luck.
Last edited: