Why does raising a number to the power of 0 always result in 1?

  • Context: MHB 
  • Thread starter Thread starter OMGMathPLS
  • Start date Start date
  • Tags Tags
    Exponent
Click For Summary
SUMMARY

The discussion clarifies that any non-zero base raised to the power of zero equals one, as demonstrated by the equation \( a^0 = \frac{a^m}{a^m} = 1 \) for \( a \neq 0 \). The confusion arises with negative bases, where \( (-2)^0 \) equals 1 due to the cancellation of negatives within parentheses, while \( -1^0 \) equals -1 because the negative sign is outside the exponentiation. The concept is further supported by discrete mathematics principles, emphasizing that \( 0^0 \) is undefined.

PREREQUISITES
  • Understanding of exponentiation rules
  • Familiarity with basic algebraic operations
  • Knowledge of discrete mathematics concepts
  • Ability to interpret mathematical notation
NEXT STEPS
  • Study the laws of exponents in depth
  • Explore the concept of undefined expressions in mathematics
  • Learn about the implications of negative bases in exponentiation
  • Investigate discrete mathematics and its applications in logic
USEFUL FOR

Students, educators, and anyone interested in understanding the principles of exponentiation, particularly in algebra and discrete mathematics.

OMGMathPLS
Messages
64
Reaction score
0
Why is base to power 0 always 1, even if it's .2^0 it =1?

Is it just counting the 1 time the .2 is existing? Is that why?And - base ^ 0 is negative whatever the number is so why is that not a negative one?

Because (-2)^2 is 4 but no because a negative times a negative is a positive.

And with parentheses -2^2 is -4, because the number is done first and then the - is kept afterwards.

So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?
 
Mathematics news on Phys.org
my explanation for it:

take $\frac{x^2}{x^2}$ when x is not equal to 0. obviously it's equal to 1, right? now by the law of subtraction for exponents $x^{2-2}=1$ which is $x^0=1$ this holds for all numbers
 
Last edited:
ineedhelpnow said:
my explanation for it:

take $\frac{x^2}{x^2}$ when x is not equal to 0. obviously it's equal to 1, right? now by the law of subtraction for exponents $x^{2-2}=1$ which is $x^0=1$ this holds for all numbers

More generally: Since $\displaystyle \begin{align*} \frac{a^m}{a^n} = a^{m-n} \end{align*}$, if the powers are the same then $\displaystyle \begin{align*} \frac{a^m}{a^m} = a^0 \end{align*}$. But the top and bottom are equal, and so they cancel leaving 1. So $\displaystyle \begin{align*} a^0 = 1 \end{align*}$.

Just note, $\displaystyle \begin{align*} 0^0 \end{align*}$ is undefined.
 
OMGMathPLS said:
Why is base to power 0 always 1, even if it's .2^0 it =1?

Is it just counting the 1 time the .2 is existing? Is that why?And - base ^ 0 is negative whatever the number is so why is that not a negative one?

Because (-2)^2 is 4 but no because a negative times a negative is a positive.

And with parentheses -2^2 is -4, because the number is done first and then the - is kept afterwards.

So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?
In the field of discrete mathematics a precise description of why it is $\displaystyle a^{0}=1$ no matter which is a [even a=0...] il given in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2479

Kind regards

$\chi$ $\sigma$
 
OMGMathPLS said:
So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?

To answer your last question, yes, we are doing the same thing. $(-2)^0$ is simply $1$ because $(-2)^0=(-2)^{1-1}=\frac{(-2)}{(-2)}=1$. The negatives cancel out because they are enclosed in parenthesis (). However, $-1^0=(-1) \cdot 1^0$ has its negative outside the parenthesis so that operation is done last: $-1^0=(-1) \cdot 1^0=(-1) \cdot 1=-1$ :D
 
Another interpretation using the concept of empty function:

If we want $\left|Y^X\right|=\left|Y\right|^{\left|X\right|}$ to hold for $X=\emptyset,$ then,$$\left|Y\right|^0=\left|Y\right|^{\left|\emptyset\right|}=\left|Y^{\emptyset}\right|=1,\quad \forall \left|Y\right|=0,1,2,\ldots$$
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 55 ·
2
Replies
55
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
6K