MHB Why does raising a number to the power of 0 always result in 1?

  • Thread starter Thread starter OMGMathPLS
  • Start date Start date
  • Tags Tags
    Exponent
AI Thread Summary
Raising any non-zero number to the power of zero results in one due to the properties of exponents, specifically that \( a^m / a^m = a^{m-m} = a^0 \), which simplifies to one when \( a \neq 0 \). This holds true regardless of whether the base is positive or negative, as demonstrated by the example of \( (-2)^0 = 1 \) because the negative is enclosed in parentheses. Conversely, \( -1^0 \) equals negative one because the negative sign is outside the exponentiation operation, leading to \( -1 \cdot 1^0 = -1 \). The discussion also notes that \( 0^0 \) is undefined, emphasizing the importance of the base being non-zero for the exponent rule to apply. Understanding these principles clarifies why any base raised to the power of zero equals one.
OMGMathPLS
Messages
64
Reaction score
0
Why is base to power 0 always 1, even if it's .2^0 it =1?

Is it just counting the 1 time the .2 is existing? Is that why?And - base ^ 0 is negative whatever the number is so why is that not a negative one?

Because (-2)^2 is 4 but no because a negative times a negative is a positive.

And with parentheses -2^2 is -4, because the number is done first and then the - is kept afterwards.

So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?
 
Mathematics news on Phys.org
my explanation for it:

take $\frac{x^2}{x^2}$ when x is not equal to 0. obviously it's equal to 1, right? now by the law of subtraction for exponents $x^{2-2}=1$ which is $x^0=1$ this holds for all numbers
 
Last edited:
ineedhelpnow said:
my explanation for it:

take $\frac{x^2}{x^2}$ when x is not equal to 0. obviously it's equal to 1, right? now by the law of subtraction for exponents $x^{2-2}=1$ which is $x^0=1$ this holds for all numbers

More generally: Since $\displaystyle \begin{align*} \frac{a^m}{a^n} = a^{m-n} \end{align*}$, if the powers are the same then $\displaystyle \begin{align*} \frac{a^m}{a^m} = a^0 \end{align*}$. But the top and bottom are equal, and so they cancel leaving 1. So $\displaystyle \begin{align*} a^0 = 1 \end{align*}$.

Just note, $\displaystyle \begin{align*} 0^0 \end{align*}$ is undefined.
 
OMGMathPLS said:
Why is base to power 0 always 1, even if it's .2^0 it =1?

Is it just counting the 1 time the .2 is existing? Is that why?And - base ^ 0 is negative whatever the number is so why is that not a negative one?

Because (-2)^2 is 4 but no because a negative times a negative is a positive.

And with parentheses -2^2 is -4, because the number is done first and then the - is kept afterwards.

So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?
In the field of discrete mathematics a precise description of why it is $\displaystyle a^{0}=1$ no matter which is a [even a=0...] il given in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2479

Kind regards

$\chi$ $\sigma$
 
OMGMathPLS said:
So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?

To answer your last question, yes, we are doing the same thing. $(-2)^0$ is simply $1$ because $(-2)^0=(-2)^{1-1}=\frac{(-2)}{(-2)}=1$. The negatives cancel out because they are enclosed in parenthesis (). However, $-1^0=(-1) \cdot 1^0$ has its negative outside the parenthesis so that operation is done last: $-1^0=(-1) \cdot 1^0=(-1) \cdot 1=-1$ :D
 
Another interpretation using the concept of empty function:

If we want $\left|Y^X\right|=\left|Y\right|^{\left|X\right|}$ to hold for $X=\emptyset,$ then,$$\left|Y\right|^0=\left|Y\right|^{\left|\emptyset\right|}=\left|Y^{\emptyset}\right|=1,\quad \forall \left|Y\right|=0,1,2,\ldots$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
17
Views
2K
Replies
10
Views
2K
Replies
7
Views
2K
Replies
55
Views
5K
3
Replies
105
Views
6K
Replies
3
Views
1K
Replies
36
Views
6K
Back
Top