MHB Why does raising a number to the power of 0 always result in 1?

  • Thread starter Thread starter OMGMathPLS
  • Start date Start date
  • Tags Tags
    Exponent
OMGMathPLS
Messages
64
Reaction score
0
Why is base to power 0 always 1, even if it's .2^0 it =1?

Is it just counting the 1 time the .2 is existing? Is that why?And - base ^ 0 is negative whatever the number is so why is that not a negative one?

Because (-2)^2 is 4 but no because a negative times a negative is a positive.

And with parentheses -2^2 is -4, because the number is done first and then the - is kept afterwards.

So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?
 
Mathematics news on Phys.org
my explanation for it:

take $\frac{x^2}{x^2}$ when x is not equal to 0. obviously it's equal to 1, right? now by the law of subtraction for exponents $x^{2-2}=1$ which is $x^0=1$ this holds for all numbers
 
Last edited:
ineedhelpnow said:
my explanation for it:

take $\frac{x^2}{x^2}$ when x is not equal to 0. obviously it's equal to 1, right? now by the law of subtraction for exponents $x^{2-2}=1$ which is $x^0=1$ this holds for all numbers

More generally: Since $\displaystyle \begin{align*} \frac{a^m}{a^n} = a^{m-n} \end{align*}$, if the powers are the same then $\displaystyle \begin{align*} \frac{a^m}{a^m} = a^0 \end{align*}$. But the top and bottom are equal, and so they cancel leaving 1. So $\displaystyle \begin{align*} a^0 = 1 \end{align*}$.

Just note, $\displaystyle \begin{align*} 0^0 \end{align*}$ is undefined.
 
OMGMathPLS said:
Why is base to power 0 always 1, even if it's .2^0 it =1?

Is it just counting the 1 time the .2 is existing? Is that why?And - base ^ 0 is negative whatever the number is so why is that not a negative one?

Because (-2)^2 is 4 but no because a negative times a negative is a positive.

And with parentheses -2^2 is -4, because the number is done first and then the - is kept afterwards.

So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?
In the field of discrete mathematics a precise description of why it is $\displaystyle a^{0}=1$ no matter which is a [even a=0...] il given in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2479

Kind regards

$\chi$ $\sigma$
 
OMGMathPLS said:
So why is (-2)^0 positive 1 and -1^0 a negative?

Is it because we're doing the same thing by adding the - after when unenclosed with a ( ) ?

To answer your last question, yes, we are doing the same thing. $(-2)^0$ is simply $1$ because $(-2)^0=(-2)^{1-1}=\frac{(-2)}{(-2)}=1$. The negatives cancel out because they are enclosed in parenthesis (). However, $-1^0=(-1) \cdot 1^0$ has its negative outside the parenthesis so that operation is done last: $-1^0=(-1) \cdot 1^0=(-1) \cdot 1=-1$ :D
 
Another interpretation using the concept of empty function:

If we want $\left|Y^X\right|=\left|Y\right|^{\left|X\right|}$ to hold for $X=\emptyset,$ then,$$\left|Y\right|^0=\left|Y\right|^{\left|\emptyset\right|}=\left|Y^{\emptyset}\right|=1,\quad \forall \left|Y\right|=0,1,2,\ldots$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
17
Views
2K
Replies
10
Views
2K
Replies
7
Views
2K
Replies
55
Views
5K
2
Replies
91
Views
6K
Replies
2
Views
1K
Replies
36
Views
5K
Back
Top