And so would you agree that the GPS calculations don't contradict the idea of reciprocal time dilation in different frames, they just doesn't address it one way or another?
You would get the same answers to questions that can be defined in a purely local manner, like what two clocks read at the moment they pass next to each other, but you could get different answers to questions that are frame-dependent, like the rate a clock is ticking at any given moment. For example, consider the SR example of a clock orbiting in a circle around a massless sphere, with another clock sitting on a tower attached to the sphere which is just the right height for the orbiting clock to pass right next to it. In this case, if you analyze things from the perspective of inertial frame A in which the tower clock is at rest, then at the moment the orbiting clock passes the tower clock, the orbiting clock is ticking slower in frame A; but if you analyze things from the perspective of inertial frame B in which the orbiting clock is instantaneously at rest when it passes the tower clock, then at the moment they pass the tower clock is ticking slower in frame B. However, both frames will agree on the times on each clock at the moment they pass since this is a purely local question, and they'll both make the same prediction about how much time elapses on each clock over the course of a full orbit, so they'll both predict that the orbiting clock will have elapsed less time than the tower clock the next time they pass each other. This is exactly like the twins paradox, since in this example the tower clock is moving inertially between meetings, while the orbiting clock is constantly accelerating.