Why doesn't it come from a cartesian product of sets?

Click For Summary
SUMMARY

The discussion clarifies that the set $I_A = \{ : a \in A \}$, which consists of ordered pairs where both elements are identical, does not derive from the Cartesian product $A \times A = \{ : a_1 \in A \wedge a_2 \in A \}$. Specifically, when $|A| > 1$, $I_A$ lacks pairs like $(a,b)$ where $a \neq b$, which are present in the Cartesian product. Therefore, $I_A$ cannot be expressed as a Cartesian product of two sets.

PREREQUISITES
  • Understanding of set theory concepts, particularly relations and Cartesian products.
  • Familiarity with the notation and properties of ordered pairs.
  • Basic knowledge of mathematical logic and proof techniques.
  • Ability to analyze and construct sets based on defined criteria.
NEXT STEPS
  • Study the properties of relations in set theory.
  • Learn about the implications of Cartesian products in mathematical logic.
  • Explore the concept of equivalence relations and their characteristics.
  • Investigate the differences between various types of set operations.
USEFUL FOR

Mathematicians, computer scientists, and students studying discrete mathematics or set theory who seek to deepen their understanding of relations and Cartesian products.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

There is the following sentence in my notes:

Let $A$ be a set. We define the set $I_A=\{ <a,a>, a \in A \}$.

$$A \times A=\{ <a_1,a_2>: a_1 \in A \wedge a_2 \in A \}$$

Then $I_A$ is a relation, but does not come from a cartesian product of sets.

Could you explain me the last sentence? (Thinking)
 
Physics news on Phys.org
To illustrate with an example. Let $A = \{a_1,a_2\}$ then $I_A = \{(a_1,a_1),(a_2,a_2)\}$ and $A \times A = \{(a_1,a_1),(a_1,a_2),(a_2,a_1),(a_2,a_2)\}$. Clearly they're not the same and as you mentioned $I_A$ does not come from a cartesian product. Look at how $I_A$ is defined, it only contains the couples where both elements are the same. The cartesian product contains all the possible couples.
 
I still haven't understood why $I_A$ does not come from a cartesian product of sets.. (Sweating)
Could you explain it further to me? (Thinking)
 
evinda said:
I still haven't understood why $I_A$ does not come from a cartesian product of sets..
It apparently means that $I_A$ is not equal to a Cartesian product of two sets if $|A|>1$. Indeed, suppose that $a,b\in A$ and $a\ne b$. Then $\langle a,a\rangle\in I_A$ and $\langle b,b\rangle\in I_A$. Suppose now that $I_A=B\times C$. Then $B$ must contain all first elements of pairs from $I_A$; in particular, $a,b\in B$. Similarly, $C$ contains all second elements of pairs from $I_A$; in particular, $a,b\in B$. But then $\langle a,b\rangle\in B\times C$ even though $\langle a,b\rangle\notin I_A$.
 
Evgeny.Makarov said:
It apparently means that $I_A$ is not equal to a Cartesian product of two sets if $|A|>1$. Indeed, suppose that $a,b\in A$ and $a\ne b$. Then $\langle a,a\rangle\in I_A$ and $\langle b,b\rangle\in I_A$. Suppose now that $I_A=B\times C$. Then $B$ must contain all first elements of pairs from $I_A$; in particular, $a,b\in B$. Similarly, $C$ contains all second elements of pairs from $I_A$; in particular, $a,b\in B$. But then $\langle a,b\rangle\in B\times C$ even though $\langle a,b\rangle\notin I_A$.

I understand... Thank you very much! (Smile)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K