Why Is Bloch's Theorem Derived Using Complex Methods?

  • Thread starter Thread starter Happiness
  • Start date Start date
  • Tags Tags
    Derivation Theorem
Click For Summary
The discussion centers on the derivation of Bloch's theorem and the justification for the solutions satisfying the equation ψ(x+l) = λψ(x). It is established that the probability of finding an electron must remain constant across indistinguishable positions, leading to the conclusion that |λ|^2 = 1 and λ = e^(iKl). The argument emphasizes that the periodic nature of the potential requires the expectation values of dynamical variables to be identical in each period, which is satisfied by the conditions in (4.191) and (4.196). However, there is confusion regarding the lengthy derivation of (4.196) in the book and whether the conditions are necessary as well as sufficient. Ultimately, the discussion seeks clarity on how symmetry considerations can succinctly lead to the phase factor e^(iKl).
Happiness
Messages
686
Reaction score
30
Why are the solutions satisfying ##\psi(x+l)=\lambda\,\psi(x)## (4.191) the only physically admissible solutions? (##l## is the period of the periodic potential.)

We may argue that the probability of finding an electron at ##x##, ##|\psi(x)|^2##, must be the same at any indistinguishable position:

##|\psi(x+l)|^2=|\psi(x)|^2##

This implies

##\psi(x+l)=\lambda\,\psi(x)##
##|\lambda|^2=1##
##\lambda=e^{iKl}##, which is the same as (4.196)

It seems that we can get (4.196) in a shorter way this way as compared to how it is done below by using the characteristic equation of matrix ##a## and the Wronskian determinant.

So it seems that the book justifies (4.191) in a different way from the argument using probability.

EDIT: I realize the probability argument does not justify the use of (4.191) either. Rather, it is justified by symmetry: Since the potential is periodic, the expectation values of all dynamical variables must be identical in every period. The only way this can happen is when (4.191) and (4.196) are true.

Still, it's unclear why the book uses such a long way to derive (4.196), without justifying the use of (4.191).

Screen Shot 2015-12-20 at 2.47.38 am.png

Screen Shot 2015-12-20 at 2.48.03 am.png

Screen Shot 2015-12-20 at 2.48.17 am.png
 
Last edited:
Physics news on Phys.org
Happiness said:
Still, it's unclear why the book uses such a long way to derive (4.196), without justifying the use of (4.191).

View attachment 93523
It has been always my question that what is the reason for using such a long way to drive Bloch Theorem. However I thought this long way is to obtain the phase factor ##e^{iKl}##. Could you please specify exactly how it can be obtained from symmetry considerations?
 
hokhani said:
It has been always my question that what is the reason for using such a long way to drive Bloch Theorem. However I thought this long way is to obtain the phase factor ##e^{iKl}##. Could you please specify exactly how it can be obtained from symmetry considerations?

Since the potential is periodic, every cell (of length ##l##) is indistinguishable from each other and the expectation values of all dynamical variables must be identical in every cell. The sufficient conditions are that (4.191) and (4.196) are true (because wave functions that differ by a constant phase factor have the same expectation values).

But I wonder if they are the necessary conditions too (ie., if two wave functions have the same expectation values of all dynamical variables, then they must differ by a constant phase factor).
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K