A Why Is Dissociation Rate Proportional to Current Raised to the Power of N?

  • A
  • Thread starter Thread starter Piki
  • Start date Start date
  • Tags Tags
    Electron Process
Piki
Messages
1
Reaction score
0
TL;DR Summary
Dissociation rate vs. current
Hello everyone,

I am looking for a simple intuitive explenation why the disociation rate is proportional to current^(N) where N determines the N-electron process in Fig. 4 of this article:
B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Phys. Rev. Lett.
78, 4410 (1997)

Thank you and regards

Bipp
 
Physics news on Phys.org
ityThe explanation for why the dissociation rate is proportional to current^(N) is that the more electrons that are involved in the process, the faster the reaction will occur. This is because the electrons must all be in the same place at the same time to initiate the reaction. When there are more electrons involved, they can interact with each other in more complex ways, leading to a faster reaction rate. Additionally, when there are more electrons, the current they create is stronger, which also increases the reaction rate.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
1
Views
12K
Back
Top