A Why Is Dissociation Rate Proportional to Current Raised to the Power of N?

  • A
  • Thread starter Thread starter Piki
  • Start date Start date
  • Tags Tags
    Electron Process
Piki
Messages
1
Reaction score
0
TL;DR Summary
Dissociation rate vs. current
Hello everyone,

I am looking for a simple intuitive explenation why the disociation rate is proportional to current^(N) where N determines the N-electron process in Fig. 4 of this article:
B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Phys. Rev. Lett.
78, 4410 (1997)

Thank you and regards

Bipp
 
Physics news on Phys.org
ityThe explanation for why the dissociation rate is proportional to current^(N) is that the more electrons that are involved in the process, the faster the reaction will occur. This is because the electrons must all be in the same place at the same time to initiate the reaction. When there are more electrons involved, they can interact with each other in more complex ways, leading to a faster reaction rate. Additionally, when there are more electrons, the current they create is stronger, which also increases the reaction rate.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...

Similar threads

Replies
1
Views
12K
Back
Top