A Why Is Dissociation Rate Proportional to Current Raised to the Power of N?

  • A
  • Thread starter Thread starter Piki
  • Start date Start date
  • Tags Tags
    Electron Process
Piki
Messages
1
Reaction score
0
TL;DR Summary
Dissociation rate vs. current
Hello everyone,

I am looking for a simple intuitive explenation why the disociation rate is proportional to current^(N) where N determines the N-electron process in Fig. 4 of this article:
B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Phys. Rev. Lett.
78, 4410 (1997)

Thank you and regards

Bipp
 
Physics news on Phys.org
ityThe explanation for why the dissociation rate is proportional to current^(N) is that the more electrons that are involved in the process, the faster the reaction will occur. This is because the electrons must all be in the same place at the same time to initiate the reaction. When there are more electrons involved, they can interact with each other in more complex ways, leading to a faster reaction rate. Additionally, when there are more electrons, the current they create is stronger, which also increases the reaction rate.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
1
Views
12K
Back
Top