MHB Why is f being an injection equivalent to this ?

Click For Summary
The discussion focuses on proving the relationship between the function f and its injective properties through set operations. The first part establishes that f(A⋂B) is a subset of f(A) ⋂ f(B). The second part demonstrates that if f(A) ⋂ f(B) is a subset of f(A⋂B), then f must be an injection, using the assumption that f(a) = f(b) leads to a contradiction unless a = b. Participants are also seeking clarification on how to prove the reverse implication, specifically that if f is an injection, then f(A) ⋂ f(B) must be a subset of f(A⋂B). The conversation emphasizes the logical connections between set theory and function properties.
fatineouahbi
Messages
10
Reaction score
0
1.Prove f(A⋂B) ⊂ f(A) ⋂ f(B)
2.Prove f(A) ⋂ f(B) ⊂ f(A⋂B) ⟺ f is an injection

I've solved the first question , as for the second I started with f(A) ⋂ f(B) ⊂ f(A⋂B) ⇒ f is an injection this way :
Let's suppose f(a) = f(b) = p
If we consider A = {a} and B = {b} then f(A) = f(B) = p
then f(A) ⋂ f(B) = p
then f(A⋂B) = p (because f(A) ⋂ f(B) ⊂ f(A⋂B) from the supposition and f(A⋂B) ⊂ f(A) ⋂ f(B) from the first question)
then A⋂B ≠ ∅
then a=b
then f is an injection .

But I don't know how to solve "f is an injection ⇒ f(A) ⋂ f(B) ⊂ f(A⋂B)" :confused:
 
Physics news on Phys.org
$(\implies)$ Assume $f(A)\cap f(B) \subset f(A\cap B)$ for all sets $A$ and $B$. Suppose $A=\{x\}$ and $B=\{y\}$ are singleton sets. Further assume that $f(x)=f(y)$. Then $f(A)=f(B)$, so $f(A)\cap f(B)$ is nonempty. By assumption, $f(A\cap B)$ is nonempty, since $f(A)\cap f(B)\subset f(A\cap B)$. This implies $A\cap B$ is nonempty. Since $A$ and $B$ are singletons, this implies $A=B$, or $\{x\}=\{y\}$, or $x=y$. Hence, $f$ is an injection.

$(\impliedby)$ This is a "what do you know" kind of proof. Can you write it out?
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 41 ·
2
Replies
41
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K