MHB Why is f being an injection equivalent to this ?

Click For Summary
The discussion focuses on proving the relationship between the function f and its injective properties through set operations. The first part establishes that f(A⋂B) is a subset of f(A) ⋂ f(B). The second part demonstrates that if f(A) ⋂ f(B) is a subset of f(A⋂B), then f must be an injection, using the assumption that f(a) = f(b) leads to a contradiction unless a = b. Participants are also seeking clarification on how to prove the reverse implication, specifically that if f is an injection, then f(A) ⋂ f(B) must be a subset of f(A⋂B). The conversation emphasizes the logical connections between set theory and function properties.
fatineouahbi
Messages
10
Reaction score
0
1.Prove f(A⋂B) ⊂ f(A) ⋂ f(B)
2.Prove f(A) ⋂ f(B) ⊂ f(A⋂B) ⟺ f is an injection

I've solved the first question , as for the second I started with f(A) ⋂ f(B) ⊂ f(A⋂B) ⇒ f is an injection this way :
Let's suppose f(a) = f(b) = p
If we consider A = {a} and B = {b} then f(A) = f(B) = p
then f(A) ⋂ f(B) = p
then f(A⋂B) = p (because f(A) ⋂ f(B) ⊂ f(A⋂B) from the supposition and f(A⋂B) ⊂ f(A) ⋂ f(B) from the first question)
then A⋂B ≠ ∅
then a=b
then f is an injection .

But I don't know how to solve "f is an injection ⇒ f(A) ⋂ f(B) ⊂ f(A⋂B)" :confused:
 
Physics news on Phys.org
$(\implies)$ Assume $f(A)\cap f(B) \subset f(A\cap B)$ for all sets $A$ and $B$. Suppose $A=\{x\}$ and $B=\{y\}$ are singleton sets. Further assume that $f(x)=f(y)$. Then $f(A)=f(B)$, so $f(A)\cap f(B)$ is nonempty. By assumption, $f(A\cap B)$ is nonempty, since $f(A)\cap f(B)\subset f(A\cap B)$. This implies $A\cap B$ is nonempty. Since $A$ and $B$ are singletons, this implies $A=B$, or $\{x\}=\{y\}$, or $x=y$. Hence, $f$ is an injection.

$(\impliedby)$ This is a "what do you know" kind of proof. Can you write it out?
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
Replies
41
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
9
Views
3K