Why is $p_i + \frac{k}{p_i}$ divisible by $3$ and $8$?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
SUMMARY

The discussion centers on proving that the sum of the divisors of a natural number \( k \), where \( k + 1 \equiv 0 \: (mod \: 24) \), is also divisible by 24. It is established that if \( k = 4n_1 + 3 \), then \( \sqrt{k} \) is not a natural number, and the divisors \( p_i \) of \( k \) less than \( \sqrt{k} \) satisfy \( p_i + \frac{k}{p_i} \) being divisible by both 3 and 8. The conclusion is that the total sum \( \sum_{i=1}^{m}(p_i + \frac{k}{p_i}) \) is consequently divisible by 24.

PREREQUISITES
  • Understanding of modular arithmetic, specifically \( k + 1 \equiv 0 \: (mod \: 24) \)
  • Knowledge of divisor functions and properties of natural numbers
  • Familiarity with the concept of square roots in the context of natural numbers
  • Basic understanding of congruences and their implications in number theory
NEXT STEPS
  • Explore the properties of divisors and their sums in number theory
  • Study modular arithmetic with a focus on divisibility rules for 3 and 8
  • Learn about the implications of \( k \equiv -1 \: (mod \: 3) \) and its applications
  • Investigate the relationship between divisors and their complements in the context of natural numbers
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in modular arithmetic and divisor functions will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Problem:
Let $k$ be a natural number, and $k+1 \equiv 0 \:\: (mod\:\:24)$

Show, that the sum of $k$´s divisors is also divisible by $24$.

Solution:
First, note that since $k = 4n_1+3$ for some $n_1\in \mathbb{N}$, $\sqrt{k}$ is not a natural number.

Let $p_1,p_2,…,p_m < \sqrt{k}$ be all $k$´s divisors smaller than $\sqrt{k}$.

Then, the sum of all $k$´s divisors is: $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$.

Now, since $k = 3n_2+2$ and $k = 8n_3+7$, and $k = p_i\frac{k}{p_i}$, the term $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$.

Thus, the sum : $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$ is also divisible by 24.

Can someone explain to me, why $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$??

Thankyou in advance!
 
Mathematics news on Phys.org
lfdahl said:
Problem:
Let $k$ be a natural number, and $k+1 \equiv 0 \:\: (mod\:\:24)$

Show, that the sum of $k$´s divisors is also divisible by $24$.

Solution:
First, note that since $k = 4n_1+3$ for some $n_1\in \mathbb{N}$, $\sqrt{k}$ is not a natural number.

Let $p_1,p_2,…,p_m < \sqrt{k}$ be all $k$´s divisors smaller than $\sqrt{k}$.

Then, the sum of all $k$´s divisors is: $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$.

Now, since $k = 3n_2+2$ and $k = 8n_3+7$, and $k = p_i\frac{k}{p_i}$, the term $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$.

Thus, the sum : $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$ is also divisible by 24.

Can someone explain to me, why $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$??

Thankyou in advance!
Hint: Let $p$ be a divisor of $k$. Can you show that $(1+p)\Bigl(1+\dfrac kp\Bigr)$ is divisible by $3$ and by $8$?
 
Opalg said:
Hint: Let $p$ be a divisor of $k$. Can you show that $(1+p)\Bigl(1+\dfrac kp\Bigr)$ is divisible by $3$ and by $8$?

Thanks for the hint:

I´m not sure. Here is my attempt:

If $p < \sqrt{k}$ and $k \equiv 0 \:\: (mod \:\: p)$ then $k+1 \equiv 0 \:\: (mod \:\: p+1)$

$\Rightarrow$ $p+1 \equiv 0 \:\: (mod \:\: 3)??$

but it is not necessarily true, that: $k+1 \equiv 0 \:\: (mod \:\: 1+\frac{k}{p}).$

For example: Say $k = 95$, then $k \equiv 0 \:\: (mod \:\: p=5)$ and $k+1=96 \equiv 0 \:\: (mod \:\: p+1=6)$

- but $\frac{k}{p}=\frac{95}{5}=19$ and $k+1=96 \not\equiv 0 \:\: (mod \:\: p+1=20)$

Still it is true, that $3$ and $8$ divides $96$. I just don´t know how to prove this ... :(

If I could show, that $3$ and $8$ divides $(1+p)(1+\frac{k}{p})$ then $k+1 + p + \frac{k}{p}$ would of course also
be divisible by $24$, that is $p +\frac{k}{p}$ would be divisible by 24 as required.
 
For convenience, write $q = \dfrac kp$, so that $k = pq$. You know that $k\equiv-1\pmod3$. As you say, it does not necessarily follow that $p\equiv-1\pmod3$. But the only way that the product of two integers can be congruent to $-1\pmod3$ is that one of them is $\equiv1\pmod3$ and the other one is $\equiv-1\pmod3.$ So what is true is that either $p+1$ or $q+1$ must be a multiple of $3$.

A similar argument working mod $4$ shows that one of the integers $p+1,\,q+1$ is a multiple of $2$ and the other one is a multiple of $4$.
 
Opalg said:
For convenience, write $q = \dfrac kp$, so that $k = pq$. You know that $k\equiv-1\pmod3$. As you say, it does not necessarily follow that $p\equiv-1\pmod3$. But the only way that the product of two integers can be congruent to $-1\pmod3$ is that one of them is $\equiv1\pmod3$ and the other one is $\equiv-1\pmod3.$ So what is true is that either $p+1$ or $q+1$ must be a multiple of $3$.

A similar argument working mod $4$ shows that one of the integers $p+1,\,q+1$ is a multiple of $2$ and the other one is a multiple of $4$.

Thanks a lot, Opalg! This really helped me solve the matter!
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K