MHB Why is $p_i + \frac{k}{p_i}$ divisible by $3$ and $8$?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The discussion revolves around proving that the sum of the divisors of a natural number \( k \), where \( k+1 \equiv 0 \mod 24 \), is also divisible by 24. It is established that \( p_i + \frac{k}{p_i} \) is divisible by both 3 and 8, which leads to the conclusion that the overall sum of divisors is divisible by 24. The participants explore the implications of \( k \equiv 0 \mod p \) and the relationships between \( p \) and \( \frac{k}{p} \) in modular arithmetic. A key insight is that one of the terms \( p+1 \) or \( \frac{k}{p}+1 \) must be a multiple of 3, while a similar argument holds for divisibility by 4. The discussion concludes with a resolution of the initial query, affirming the divisibility conditions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Problem:
Let $k$ be a natural number, and $k+1 \equiv 0 \:\: (mod\:\:24)$

Show, that the sum of $k$´s divisors is also divisible by $24$.

Solution:
First, note that since $k = 4n_1+3$ for some $n_1\in \mathbb{N}$, $\sqrt{k}$ is not a natural number.

Let $p_1,p_2,…,p_m < \sqrt{k}$ be all $k$´s divisors smaller than $\sqrt{k}$.

Then, the sum of all $k$´s divisors is: $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$.

Now, since $k = 3n_2+2$ and $k = 8n_3+7$, and $k = p_i\frac{k}{p_i}$, the term $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$.

Thus, the sum : $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$ is also divisible by 24.

Can someone explain to me, why $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$??

Thankyou in advance!
 
Mathematics news on Phys.org
lfdahl said:
Problem:
Let $k$ be a natural number, and $k+1 \equiv 0 \:\: (mod\:\:24)$

Show, that the sum of $k$´s divisors is also divisible by $24$.

Solution:
First, note that since $k = 4n_1+3$ for some $n_1\in \mathbb{N}$, $\sqrt{k}$ is not a natural number.

Let $p_1,p_2,…,p_m < \sqrt{k}$ be all $k$´s divisors smaller than $\sqrt{k}$.

Then, the sum of all $k$´s divisors is: $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$.

Now, since $k = 3n_2+2$ and $k = 8n_3+7$, and $k = p_i\frac{k}{p_i}$, the term $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$.

Thus, the sum : $\sum_{i=1}^{m}\left ( p_i+\frac{k}{p_i} \right )$ is also divisible by 24.

Can someone explain to me, why $p_i+\frac{k}{p_i}$ is divisible by $3$ and $8$??

Thankyou in advance!
Hint: Let $p$ be a divisor of $k$. Can you show that $(1+p)\Bigl(1+\dfrac kp\Bigr)$ is divisible by $3$ and by $8$?
 
Opalg said:
Hint: Let $p$ be a divisor of $k$. Can you show that $(1+p)\Bigl(1+\dfrac kp\Bigr)$ is divisible by $3$ and by $8$?

Thanks for the hint:

I´m not sure. Here is my attempt:

If $p < \sqrt{k}$ and $k \equiv 0 \:\: (mod \:\: p)$ then $k+1 \equiv 0 \:\: (mod \:\: p+1)$

$\Rightarrow$ $p+1 \equiv 0 \:\: (mod \:\: 3)??$

but it is not necessarily true, that: $k+1 \equiv 0 \:\: (mod \:\: 1+\frac{k}{p}).$

For example: Say $k = 95$, then $k \equiv 0 \:\: (mod \:\: p=5)$ and $k+1=96 \equiv 0 \:\: (mod \:\: p+1=6)$

- but $\frac{k}{p}=\frac{95}{5}=19$ and $k+1=96 \not\equiv 0 \:\: (mod \:\: p+1=20)$

Still it is true, that $3$ and $8$ divides $96$. I just don´t know how to prove this ... :(

If I could show, that $3$ and $8$ divides $(1+p)(1+\frac{k}{p})$ then $k+1 + p + \frac{k}{p}$ would of course also
be divisible by $24$, that is $p +\frac{k}{p}$ would be divisible by 24 as required.
 
For convenience, write $q = \dfrac kp$, so that $k = pq$. You know that $k\equiv-1\pmod3$. As you say, it does not necessarily follow that $p\equiv-1\pmod3$. But the only way that the product of two integers can be congruent to $-1\pmod3$ is that one of them is $\equiv1\pmod3$ and the other one is $\equiv-1\pmod3.$ So what is true is that either $p+1$ or $q+1$ must be a multiple of $3$.

A similar argument working mod $4$ shows that one of the integers $p+1,\,q+1$ is a multiple of $2$ and the other one is a multiple of $4$.
 
Opalg said:
For convenience, write $q = \dfrac kp$, so that $k = pq$. You know that $k\equiv-1\pmod3$. As you say, it does not necessarily follow that $p\equiv-1\pmod3$. But the only way that the product of two integers can be congruent to $-1\pmod3$ is that one of them is $\equiv1\pmod3$ and the other one is $\equiv-1\pmod3.$ So what is true is that either $p+1$ or $q+1$ must be a multiple of $3$.

A similar argument working mod $4$ shows that one of the integers $p+1,\,q+1$ is a multiple of $2$ and the other one is a multiple of $4$.

Thanks a lot, Opalg! This really helped me solve the matter!
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top