MHB Why Is $\{ x: \phi(x) \}$ a Set Given $Y$?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Proof Theorem
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

Theorem:

Let $\phi$ a type. We suppose that the set $Y$ exists, such that: $\forall x (\phi(x) \rightarrow x \in Y)$. Then there is the set $\{ x: \phi(x) \}$.

Proof:

From the Axiom schema of specification

("Let $\phi$ a type. For each set $A$, there is a set $B$, that consists of these elements of $A$, that satisfy the identity $\phi$, so:

$$ \exists B \forall x (x \in B \leftrightarrow x \in A \wedge \phi(x))$$

so: $B=\{ x: x \in A \wedge \phi(x) \}$ is a set."
)

there is the set $Z=\{ x \in Y: \phi(x) \}$

$$x \in Z \leftrightarrow (x \in Y \wedge \phi(x) ) \leftrightarrow \phi(x)$$

Therefore:

$$Z=\{ x: \phi(x) \}$$

and so, $\{x: \phi(x) \}$ is a set.Could you explain me the proof of the theorem? (Worried) (Thinking)
 
Physics news on Phys.org
Intuitively, one is not allowed to form the set of all objects $x$ satisfying $\phi(x)$. One is, however, allowed to pick such objects (i.e., those that satisfy $\phi$) from a previously constructed set $A$, and call the result a set. That is, if you ask the set-robot: "Collect everything satisfying $\phi$", it will answer: "Sorry, can't do. Too much work. The search scope is undefined". But if you say, "Collect everything satisfying $\phi$ from the set continuum to the power continuum", the robot will say, "Here you are".

In your proof, all sets satisfying $\phi$ are already in $Y$, so if you collect all elements of $Y$ satisfying $\phi$ (which is allowed by the axiom schema of specification), you'll get the set of all sets satisfying $\phi$ at all, whether in $Y$ or not.

For more help, please write the specific place in the proof you don't understand and what you think about it.
 
Evgeny.Makarov said:
Intuitively, one is not allowed to form the set of all objects $x$ satisfying $\phi(x)$. One is, however, allowed to pick such objects (i.e., those that satisfy $\phi$) from a previously constructed set $A$, and call the result a set. That is, if you ask the set-robot: "Collect everything satisfying $\phi$", it will answer: "Sorry, can't do. Too much work. The search scope is undefined". But if you say, "Collect everything satisfying $\phi$ from the set continuum to the power continuum", the robot will say, "Here you are".

In your proof, all sets satisfying $\phi$ are already in $Y$, so if you collect all elements of $Y$ satisfying $\phi$ (which is allowed by the axiom schema of specification), you'll get the set of all sets satisfying $\phi$ at all, whether in $Y$ or not.

For more help, please write the specific place in the proof you don't understand and what you think about it.
Axiom schema of specification:
"Let $\phi$ a type. For each set $A$, there is a set $B$, that consists of these elements of $A$, that satisfy the identity $\phi$, so:

$$ \exists B \forall x (x \in B \leftrightarrow x \in A \wedge \phi(x))$$

so: $B=\{ x: x \in A \wedge \phi(x) \}$ is a set."

We know that $\exists Y$, such that $\forall x(\phi(x) \rightarrow x \in Y)$

From the above theorem, $\exists$ a set $B$, that contains these elements of $Y$, that satisfy $\phi$, so:

$\exists B \forall (x \in B \leftrightarrow x \in Y \wedge \phi(x))$

so: $B=\{ x: x \in Y \wedge \phi(x) \}$ is a set.

But, why will we get then the set of all sets satisfying $\phi$ at all, whether in $Y$ or not, although it is:

$$x \in Z \leftrightarrow (x \in Y \wedge \phi(x))$$

? (Thinking)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...

Similar threads

Back
Top