(adsbygoogle = window.adsbygoogle || []).push({}); Why "modulo m1" and "modulo m2" implies "modulo [m1, m2]"

If [tex]a \equiv r[/tex] (mod m_{1}) and [tex]a \equiv r[/tex] (mod m_{2}) then [tex]a \equiv r[/tex] (mod [m_{1}, m_{2}]), where [a, b] is the least common multiple of a and b.

I have tried to prove that.

Assume that

[tex][m_{1}, m_{2}] = l_{1}m_{1} = l_{2}m_{2}[/tex]

and

[tex]a = k_{1}m_{1} + r[/tex]

[tex]a = k_{2}m_{2} + r[/tex]

Then

[tex]al_{1} = k_{1}l_{1}m_{1} + rl_{1}[/tex]

[tex]al_{2} = k_{2}l_{2}m_{2} + rl_{2}[/tex]

thus

[tex]a(l_{1} - l_{2}) = [m_{1}, m_{2}](k_{1} - k_{2}) + r(l_{1} - l_{2})[/tex]

and

[tex]a = [m_{1}, m_{2}] {(k_{1} - k_{2}) \over (l_{1} - l_{2})} + r[/tex]

In order to

[tex]a \equiv r\ (mod [m_{1}, m_{2}])[/tex], or [tex]a = K[m_{1}, m_{2}] + r[/tex]

we have to prove that

[tex](l_{1} - l_{2})\; | \; (k_{1} - k_{2})[/tex]

But how?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Why modulo m1 and modulo m2 implies modulo [m1, m2]

**Physics Forums | Science Articles, Homework Help, Discussion**