Undergrad Wilson-Sommerfeld quantization to solve square-well potential

Click For Summary
The Wilson-Sommerfeld quantization rule is applied to a square-well potential, yielding energy levels that are accurate only in the limit of infinite well depth. The discussion highlights that the rule's failure for finite well depths stems from the wavefunction's exponential decay beyond the potential walls, which is not accounted for in the zeroth-order WKB approximation. The turning points are crucial, as the assumption that the wavefunction is zero there may not hold true, complicating the application of the quantization rule. The conversation also touches on the difference between classical and quantum mechanical behaviors in bound states, emphasizing that quantum corrections are necessary for accurate results. Understanding these nuances is essential for reconciling the discrepancies in predicted energy levels for finite versus infinite square wells.
Robin04
Messages
259
Reaction score
16
TL;DR
Applying the Wilson-Sommerfeld quantization rule to solve the square-well potential problem
The Wilson-Sommerfeld quantization rule claims (##\hbar=1##)
$$\frac{1}{2\pi} \oint p(x)\,dx=n,\,n=1, 2, ...$$
where integration is done in the classically allowed region. Applying this to a square-well potential with a depth of ##V_0## and width ##a##, we get $$E=\frac{\pi^2 n^2}{2a^2}$$
This only gives the correct result in the limit ##V_0 \rightarrow \infty##, and for low ##V_0## the error is quite substantial. I would like to understand why.

As I leant, the Wilson-Sommerfeld rule can be obtained from a zeroth-order WKB approximation. Let us consider a potential well described by a continuous function ##V(x)##, and pick two classical turning points ##x_1 < x < x_2##. In zeroth-order, the wave function can be given by
$$\psi_1 = exp\left( \pm i \int_{x_1}^x p\,dx\right)$$
but also as
$$\psi_2 = exp\left( \pm i \int_{x}^{x_2} p\,dx\right)$$
They have to be equal, and the real and imaginary parts yield the same result, namely, for the real part
$$\cos\left(\int_{x_1}^x p\,dx\right)=\cos\left(\int_{x}^{x_2} p\,dx\right)$$
Here comes a part that I don't understand ##(1)##: this implies that the sum of their phases have to be ##2\pi n##, from which
$$\int_{x_1}^{x_2}p\,dx=2\pi n$$
which is the desired result. The other part that I don't understand ##(2)## is that what step caused this result to only be valid for an infinitely deep square-well potential? I read about more detailed calculations that treat the regions around the turning points and those lead to the Bohr-Sommerfeld rule, which gives the correct result for a harmonic oscillator for example, but for this square potential it doesn't work at all. Can you help me figure this out?
 
Physics news on Phys.org
Solutions of finite well have exponential decay part beyond the wall that the rule you mentioned does not include. Infinite well does not allow such permeation of wave function. I assume it is at least a part of reason to explain why.
 
anuttarasammyak said:
Solutions of finite well have exponential decay part beyond the wall that the rule you mentioned does not include. Infinite well does not allow such permeation of wave function. I assume it is at least a part of reason to explain why.
That is true, but I assume there's a (hidden) step in this calculation that assumes that the wavefunction at the turning points is zero.
 
If you go further to WKB approximation this exponential dumping is considered.

Robin04 said:
Summary:: Applying the Wilson-Sommerfeld quantization rule to solve the square-well potential problem
I read about more detailed calculations that treat the regions around the turning points and those lead to the Bohr-Sommerfeld rule, which gives the correct result for a harmonic oscillator for example,

I am afraid your method gives right wave function for harmonic oscillator. You say the correct result, it is of eigenvalue, wave function or any there features ?

Robin04 said:
That is true, but I assume there's a (hidden) step in this calculation that assumes that the wavefunction at the turning points is zero.

I do not think ##e^{ipx}## cannot be zero at turning point mathematically.
 
anuttarasammyak said:
I am afraid your method gives right wave function for harmonic oscillator. You say the correct result, it is of eigenvalue, wave function or any there features ?
Right wave function for harmonic oscillator? Those should be Hermite-polynomials, not simple exponentials, no? By correct result I mean eigenvalues.
anuttarasammyak said:
I do not think ##e^{ipx}##cannot be zero at turning point mathematically.
That is true, but the ##\pm## in the argument means that it is a linear combination of a ##+## and a ##-## term. My writing was a bit misunderstandable, sorry. It can be sine and cosine, so it can be zero at the turning points.

Could it be that the correctness of the quantization rule obtained from the consistency of given-order WKB wave functions does not imply the correctness of the wave function itself? It wouldn't answer my question, but I would be one step closer, I guess.
 
Another idea: classically, the bound states in a square-well potential are independent of the depth of the well, while in quantum mechanics for a given level the wave functions take different values at the classical turning points for different depths. In zeroth-order, no quantum correction should appear, so one way of choosing consistent boundary conditions is to zero out the wavefunctions at the turning points. However, I still don't see how this appears mathematically here.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K