MHB With how many ways can the digits be arranged?

  • Thread starter Thread starter evinda
  • Start date Start date
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Blush)

With how many ways can the digits $1,2,3,4,5$ be arranged?And with how many ways can these digits $1,1,3,4,5$ be arranged?

The digits $1,2,3,4,5$ can be arranged with $5!$ ways,right?

For the second subquestion,I tried to arrange the digits: $1,1,3$ and found that there are $\binom{3}{2}=3$ ways,so is it in our case $\binom{5}{2}$,or am I wrong?? :confused:
 
Physics news on Phys.org
I thought about it again.. (Thinking) Is it maybe $\frac{5!}{2!}$ ? :confused: Because,we choose firstly $2$ positions for the $1$s.There are $\binom{5}{2}$ possibilities,and then we arrange the left digits at the $3$ left positions.As the digits are discrete,there are $3!$ ways to arrange them.So,there are,in total, $\binom{5}{2} \cdot 3!$ ways to arrange the digits.
 
Last edited:
evinda said:
I thought about it again.. (Thinking) Is it maybe $\frac{5!}{2!}$ ? :confused: Because,we choose firstly $2$ positions for the $1$s.There are $\binom{5}{2}$ possibilities,and then we arrange the left digits at the $3$ left positions.As the digits are discrete,there are $3!$ ways to arrange them.So,there are,in total, $\binom{5}{2} \cdot 3!$ ways to arrange the digits.

First pretend all possibilities are distinct: so that would $5!$ possibilities. But for each arragnement, 2 are not distinct. So there are $\frac{5!}{2}$ possible arrangements.
 
Fermat said:
First pretend all possibilities are distinct: so that would $5!$ possibilities. But for each arragnement, 2 are not distinct. So there are $\frac{5!}{2}$ possible arrangements.

So you mean that the denominator should't be $2!$ ? For example,if we would have to arrange the digits $1,1,1,2,2,3,4,5$ wouldn't there be $\frac{8!}{3!2!}$ ways? :confused:
 
Last edited:
evinda said:
So you mean that the denominator should't be $2!$ ? For eaxmple,if we would have to arrange the digits $1,1,1,2,2,3,4,5$ wouldn't there be $\frac{8!}{3!2!}$ ways? :confused:

you are right,but observe 2!=2
 
Last edited:
Fermat said:
you are right,but observe 2!=2

Ok,thank you! :)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...

Similar threads

Replies
14
Views
2K
Replies
5
Views
2K
Replies
18
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Back
Top