X-Ray Tube Emission: Wave Particle Duality Explained

Click For Summary
The discussion centers on the concept of wave-particle duality as illustrated through x-ray tube emission and the photoelectric effect. Participants explore how free electrons, when accelerated and decelerated, emit x-rays and whether these emissions can be classified as waves despite not behaving like classical waves. The conversation highlights that emitted photons can exhibit both wave-like and particle-like properties, with the emission process described as a continuous spectrum resulting from discrete pulses of varying wavelengths. Clarification is provided that classical electromagnetic theory can adequately describe this phenomenon, emphasizing the relationship between accelerating charges and wave behavior. The exchange concludes with an acknowledgment of the complexities involved in reconciling classical and quantum perspectives.
twinsen
Messages
44
Reaction score
0
In a lecture today our lecturer illustrated the idea of wave particle duality and gave some experiments that show evidence for the particle side of things. Namely photoelectric and x-ray tube.
If I get this right the basic idea is that free electrons are accelerated through a potential difference to high speeds then collide with a screen of some material. This material decelerates the electrons causing x-ray emission.
What I don't quite get is that how can the emitted photon have wave like properties if it isn't a wave in the classical sense as surely the charge is not oscillating. Wouldnt the deceleration of a charge just cause a bump or small pulse in the EM field. Can a short pulse be taken to be a wave and how can you measure properties like frequency of such a wave.

Alex

PS. I wasnt sure where to post this classical/quantum sorry ;)
 
Physics news on Phys.org
But the photon clearly have particle properties aswell, can you combine that into the classical wave theory?

The electron is not continuous decreasing, it is losing photons in discrete steps, according to Quantum Electrodynamics, on "microscopic" scales of course =)
 
twinsen said:
In a lecture today our lecturer illustrated the idea of wave particle duality and gave some experiments that show evidence for the particle side of things. Namely photoelectric and x-ray tube.
If I get this right the basic idea is that free electrons are accelerated through a potential difference to high speeds then collide with a screen of some material. This material decelerates the electrons causing x-ray emission.
What I don't quite get is that how can the emitted photon have wave like properties if it isn't a wave in the classical sense as surely the charge is not oscillating. Wouldnt the deceleration of a charge just cause a bump or small pulse in the EM field. Can a short pulse be taken to be a wave and how can you measure properties like frequency of such a wave.

Alex

PS. I wasnt sure where to post this classical/quantum sorry ;)

I think (and I'm only guessing here) that your teacher is trying to illustrate the fact that "breaking radiation" or Bremsstrahlung can easily be described using classical E&M, and thus, makes it a "wave" behavior. It isn't something I would do, but it would be something I won't find difficult to understand why he/she would use it in this way.

Zz.
 
Yer that sounds like what we were doing.

Ah so the emission is more of a continuous spectrum is this built out of lots of separate pulses of differing wavelength?

Alex
 
twinsen said:
Yer that sounds like what we were doing.

Ah so the emission is more of a continuous spectrum is this built out of lots of separate pulses of differing wavelength?

Alex

Classical description doesn't necessary imply a continuous spectrum. For example, a waveguide can be accurately described with straightforward wave picture, and you get discrete wavelengths (frequencies) in there. It is just that in Bremsstrahlung, you can apply the "accelerating" (or in this case, decelerating) charge description from classical E&M, which of course, is based on the wave description of E&M radiation.

Zz.
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K