MHB You're welcome! Glad I could help. (Thumbs up)

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Wave)

Let $R$ be a relation.

Show the following sentences:

  1. $dom(R^{-1})=rng(R)$
  2. $rng(R^{-1})=dom(R)$
  3. $fld(R^{-1})=fld(R)$
  4. $(R^{-1})^{-1}=R$

That's what I have tried:

  1. Let $x \in dom(R^{-1})$. Then $\exists y$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow x \in rng(R)$.

    So, $dom(R^{-1}) \subset rng(R)$.

    Let $y \in rng(R)$. Then $\exists x$ such that $<x,y> \in R \Rightarrow <y,x> \in R^{-1} \Rightarrow y \in dom(R^{-1})$.

    So, $rng(R) \subset dom(R^{-1})$.

    Therefore, $rng(R)=dom(R^{-1})$.
  2. Let $y \in rng(R^{-1})$. Then $\exists x$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow y \in dom R$.

    So, $rng(R^{-1}) \subset dom R$

    Let $y \in dom R$. Then $\exists y$ such that $<x,y> ain R \Rightarrow <y,x> \in R^{-1} \Rightarrow x \in rng(R^{-1})$

    So, $dom R \subset rng(R^{-1})$.

    Therefore, $dom R = rng(R^{-1})$.
  3. $$fld(R^{-1})=dom(R^{-1}) \cup rng (R^{-1})=rng(R) \cup dom R$$
    $$fld(R)=dom R \cup rng(R)$$

Is that what I have tried right or have I done something wrong? (Thinking)

Also, how could we prove the fourth identity $(R^{-1})^{-1}=R$ ? :confused:
 
Physics news on Phys.org
Number 1-3 are correct. Number 4 is even easier than 1 or 2.
 
Evgeny.Makarov said:
Number 1-3 are correct. Number 4 is even easier than 1 or 2.

Is it maybe like that? (Thinking)

Let $<y,x> \in (R^{-1})^{-1}$. Then: $<x,y> \in R^{-1} \Rightarrow <y,x> \in R$.

So, $(R^{-1})^{-1} \subset R$.

Let $<x,y> \in R$. Then: $<y,x> \in R^{-1} \Rightarrow <x,y> \in (R^{-1})^{-1}$.

So, $R \subset (R^{-1})^{-1}$.

Therefore, $(R^{-1})^{-1}=R$.

(Thinking)
 
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]
 
Evgeny.Makarov said:
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]

Nice! I understand! (Nod) Thanks a lot! (Smile)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top