MHB You're welcome! Glad I could help. (Thumbs up)

Click For Summary
The discussion focuses on proving properties of the inverse of a relation, specifically showing that the domain of the inverse equals the range of the original relation, and vice versa. Participants confirm that the first three identities are correct, while also discussing the proof for the fourth identity, which states that the inverse of the inverse relation returns the original relation. A detailed explanation is provided for each identity, including the use of logical implications to establish equivalences. The conversation concludes with an affirmation of understanding regarding the proofs presented.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Wave)

Let $R$ be a relation.

Show the following sentences:

  1. $dom(R^{-1})=rng(R)$
  2. $rng(R^{-1})=dom(R)$
  3. $fld(R^{-1})=fld(R)$
  4. $(R^{-1})^{-1}=R$

That's what I have tried:

  1. Let $x \in dom(R^{-1})$. Then $\exists y$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow x \in rng(R)$.

    So, $dom(R^{-1}) \subset rng(R)$.

    Let $y \in rng(R)$. Then $\exists x$ such that $<x,y> \in R \Rightarrow <y,x> \in R^{-1} \Rightarrow y \in dom(R^{-1})$.

    So, $rng(R) \subset dom(R^{-1})$.

    Therefore, $rng(R)=dom(R^{-1})$.
  2. Let $y \in rng(R^{-1})$. Then $\exists x$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow y \in dom R$.

    So, $rng(R^{-1}) \subset dom R$

    Let $y \in dom R$. Then $\exists y$ such that $<x,y> ain R \Rightarrow <y,x> \in R^{-1} \Rightarrow x \in rng(R^{-1})$

    So, $dom R \subset rng(R^{-1})$.

    Therefore, $dom R = rng(R^{-1})$.
  3. $$fld(R^{-1})=dom(R^{-1}) \cup rng (R^{-1})=rng(R) \cup dom R$$
    $$fld(R)=dom R \cup rng(R)$$

Is that what I have tried right or have I done something wrong? (Thinking)

Also, how could we prove the fourth identity $(R^{-1})^{-1}=R$ ? :confused:
 
Physics news on Phys.org
Number 1-3 are correct. Number 4 is even easier than 1 or 2.
 
Evgeny.Makarov said:
Number 1-3 are correct. Number 4 is even easier than 1 or 2.

Is it maybe like that? (Thinking)

Let $<y,x> \in (R^{-1})^{-1}$. Then: $<x,y> \in R^{-1} \Rightarrow <y,x> \in R$.

So, $(R^{-1})^{-1} \subset R$.

Let $<x,y> \in R$. Then: $<y,x> \in R^{-1} \Rightarrow <x,y> \in (R^{-1})^{-1}$.

So, $R \subset (R^{-1})^{-1}$.

Therefore, $(R^{-1})^{-1}=R$.

(Thinking)
 
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]
 
Evgeny.Makarov said:
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]

Nice! I understand! (Nod) Thanks a lot! (Smile)
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 18 ·
Replies
18
Views
2K