You're welcome! Glad I could help. (Thumbs up)

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    identities Relation
Click For Summary

Discussion Overview

The discussion revolves around properties of relations and their inverses in set theory, specifically focusing on demonstrating several identities involving the domain, range, and field of a relation and its inverse. Participants explore proofs for these identities and clarify their reasoning.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant attempts to prove that \( dom(R^{-1}) = rng(R) \) and \( rng(R^{-1}) = dom(R) \) by showing both inclusions.
  • The same participant also explores the identity \( fld(R^{-1}) = fld(R) \) and provides reasoning based on the definitions of domain and range.
  • Another participant agrees that the first three identities are correct and suggests that the fourth identity, \( (R^{-1})^{-1} = R \), is easier to prove than the others.
  • A subsequent participant proposes a proof for the fourth identity, demonstrating the inclusion in both directions.
  • Further agreement is expressed by another participant who reiterates the proof of the fourth identity using a chain of equivalences.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the first three identities. There is also consensus on the validity of the fourth identity, as multiple participants provide similar proofs for it.

Contextual Notes

Some participants express uncertainty about the clarity of their proofs and seek confirmation on their reasoning. There are no explicit limitations noted in the discussion.

Who May Find This Useful

This discussion may be useful for students and individuals studying set theory, particularly those interested in the properties of relations and their inverses.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Wave)

Let $R$ be a relation.

Show the following sentences:

  1. $dom(R^{-1})=rng(R)$
  2. $rng(R^{-1})=dom(R)$
  3. $fld(R^{-1})=fld(R)$
  4. $(R^{-1})^{-1}=R$

That's what I have tried:

  1. Let $x \in dom(R^{-1})$. Then $\exists y$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow x \in rng(R)$.

    So, $dom(R^{-1}) \subset rng(R)$.

    Let $y \in rng(R)$. Then $\exists x$ such that $<x,y> \in R \Rightarrow <y,x> \in R^{-1} \Rightarrow y \in dom(R^{-1})$.

    So, $rng(R) \subset dom(R^{-1})$.

    Therefore, $rng(R)=dom(R^{-1})$.
  2. Let $y \in rng(R^{-1})$. Then $\exists x$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow y \in dom R$.

    So, $rng(R^{-1}) \subset dom R$

    Let $y \in dom R$. Then $\exists y$ such that $<x,y> ain R \Rightarrow <y,x> \in R^{-1} \Rightarrow x \in rng(R^{-1})$

    So, $dom R \subset rng(R^{-1})$.

    Therefore, $dom R = rng(R^{-1})$.
  3. $$fld(R^{-1})=dom(R^{-1}) \cup rng (R^{-1})=rng(R) \cup dom R$$
    $$fld(R)=dom R \cup rng(R)$$

Is that what I have tried right or have I done something wrong? (Thinking)

Also, how could we prove the fourth identity $(R^{-1})^{-1}=R$ ? :confused:
 
Physics news on Phys.org
Number 1-3 are correct. Number 4 is even easier than 1 or 2.
 
Evgeny.Makarov said:
Number 1-3 are correct. Number 4 is even easier than 1 or 2.

Is it maybe like that? (Thinking)

Let $<y,x> \in (R^{-1})^{-1}$. Then: $<x,y> \in R^{-1} \Rightarrow <y,x> \in R$.

So, $(R^{-1})^{-1} \subset R$.

Let $<x,y> \in R$. Then: $<y,x> \in R^{-1} \Rightarrow <x,y> \in (R^{-1})^{-1}$.

So, $R \subset (R^{-1})^{-1}$.

Therefore, $(R^{-1})^{-1}=R$.

(Thinking)
 
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]
 
Evgeny.Makarov said:
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]

Nice! I understand! (Nod) Thanks a lot! (Smile)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
3
Views
2K