You're welcome! Glad I could help. (Thumbs up)

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    identities Relation
Click For Summary
SUMMARY

This discussion focuses on the properties of the inverse of a relation, denoted as $R^{-1}$. The participants confirm that the identities $dom(R^{-1}) = rng(R)$, $rng(R^{-1}) = dom(R)$, and $fld(R^{-1}) = fld(R)$ are correct. They also successfully prove the fourth identity, $(R^{-1})^{-1} = R$, using logical equivalences and subset arguments. The proofs provided are mathematically sound and demonstrate a clear understanding of relation properties.

PREREQUISITES
  • Understanding of set theory and relations
  • Familiarity with mathematical notation for functions and relations
  • Knowledge of domain, range, and field of a relation
  • Basic logic and proof techniques in mathematics
NEXT STEPS
  • Study the properties of functions and their inverses in set theory
  • Learn about equivalence relations and their characteristics
  • Explore advanced topics in discrete mathematics, focusing on relations
  • Practice proving properties of relations with additional examples
USEFUL FOR

Mathematics students, educators, and anyone interested in discrete mathematics and the properties of relations will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Wave)

Let $R$ be a relation.

Show the following sentences:

  1. $dom(R^{-1})=rng(R)$
  2. $rng(R^{-1})=dom(R)$
  3. $fld(R^{-1})=fld(R)$
  4. $(R^{-1})^{-1}=R$

That's what I have tried:

  1. Let $x \in dom(R^{-1})$. Then $\exists y$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow x \in rng(R)$.

    So, $dom(R^{-1}) \subset rng(R)$.

    Let $y \in rng(R)$. Then $\exists x$ such that $<x,y> \in R \Rightarrow <y,x> \in R^{-1} \Rightarrow y \in dom(R^{-1})$.

    So, $rng(R) \subset dom(R^{-1})$.

    Therefore, $rng(R)=dom(R^{-1})$.
  2. Let $y \in rng(R^{-1})$. Then $\exists x$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow y \in dom R$.

    So, $rng(R^{-1}) \subset dom R$

    Let $y \in dom R$. Then $\exists y$ such that $<x,y> ain R \Rightarrow <y,x> \in R^{-1} \Rightarrow x \in rng(R^{-1})$

    So, $dom R \subset rng(R^{-1})$.

    Therefore, $dom R = rng(R^{-1})$.
  3. $$fld(R^{-1})=dom(R^{-1}) \cup rng (R^{-1})=rng(R) \cup dom R$$
    $$fld(R)=dom R \cup rng(R)$$

Is that what I have tried right or have I done something wrong? (Thinking)

Also, how could we prove the fourth identity $(R^{-1})^{-1}=R$ ? :confused:
 
Physics news on Phys.org
Number 1-3 are correct. Number 4 is even easier than 1 or 2.
 
Evgeny.Makarov said:
Number 1-3 are correct. Number 4 is even easier than 1 or 2.

Is it maybe like that? (Thinking)

Let $<y,x> \in (R^{-1})^{-1}$. Then: $<x,y> \in R^{-1} \Rightarrow <y,x> \in R$.

So, $(R^{-1})^{-1} \subset R$.

Let $<x,y> \in R$. Then: $<y,x> \in R^{-1} \Rightarrow <x,y> \in (R^{-1})^{-1}$.

So, $R \subset (R^{-1})^{-1}$.

Therefore, $(R^{-1})^{-1}=R$.

(Thinking)
 
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]
 
Evgeny.Makarov said:
Yes. I would write it as a chain of equivalences:
\[
\langle x,y\rangle\in R\iff \langle y,x\rangle\in R^{-1}\iff \langle x,y\rangle\in(R^{-1})^{-1}.
\]

Nice! I understand! (Nod) Thanks a lot! (Smile)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K