MHB ZFC and the Pairing Principle .... Searcoid Theorem 1.1.5 ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Micheal Searcoid's book: Elements of Abstract Nalysis ( Springer Undergraduate Mathematics Series) ...

I am currently focussed on Searcoid's treatment of ZFC in Chapter 1: Sets ...

I am trying to attain a full understanding of Searcoid's proof of the Pairing Principle ...

The Pairing Principle and its proof reads as follows:https://www.physicsforums.com/attachments/8285
In the above proof by Searcoid we read the following:

" ... ... By applying Axiom III to the set $$\mathcal{P} \mathcal{P} ( \emptyset )$$ ... ... " What is $$\mathcal{P} \mathcal{P} ( \emptyset )$$ ... what is its value and how (in detail) is it determined ... and further how exactly (in detail) do we apply Axiom III to it .. ?

Peter=========================================================================The above post refers to Axiom I and III ... so I am providing the text of these ... and for context/notation ... the rest of Searcoid's introduction to the ZFC Axioms up to the Pairing Principle ... as follows ...
https://www.physicsforums.com/attachments/8286
https://www.physicsforums.com/attachments/8287
View attachment 8288Hope that the provision of the above text helps ...

Peter
 
Physics news on Phys.org
Peter said:
In the above proof by Searcoid we read the following:

" ... ... By applying Axiom III to the set $$\mathcal{P} \mathcal{P} ( \emptyset )$$ ... ... "

What is $$\mathcal{P} \mathcal{P} ( \emptyset )$$
The notation $\mathcal{P}(x)$ is introduced after Axiom II. The notation $\mathcal{P}\mathcal{P}(\emptyset)$ means $\mathcal{P}(\mathcal{P}(\emptyset))$.

Peter said:
how exactly (in detail) do we apply Axiom III to it .. ?
The axiom of replacement (Axiom III) says that the image of a set under a function is a set. Here we apply the function that maps $\emptyset$ to $a$ and $\{\emptyset\}$ to $b$ (more precisely, the corresponding functional relation) to the set $\mathcal{P}(\mathcal{P}(\emptyset))=\{\emptyset,\{\emptyset\}\}$.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top