View Single Post
solakis
#1
Aug9-11, 08:40 AM
P: 19
Given the following :

1)[itex]\forall x\forall y\forall z G(F(F(x,y),z),F(x,F(y,z)))[/itex]


2)[itex]\forall xG(F(x,c),x)[/itex]


3)[itex]\forall x\exists yG(F(x,y),c)[/itex]


4)[itex]\forall x\forall yG(F(x,y),F(y,x))[/itex].


5) [itex]\forall x\forall y\forall z ( G(x,y)\wedge G(x,z)\Longrightarrow G(y,z))[/itex]

Where G is a two place predicate symbol. F ,is a two place term symbol and c is a constant.


Prove :[itex]\exists! y\forall xG(F(x,y),x)[/itex]

[itex]\exists ! y[/itex] means : there exists a unique y
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker