View Single Post
solakis
#1
Aug9-11, 08:40 AM
P: 19
Given the following :

1)[itex]\forall x\forall y\forall z G(F(F(x,y),z),F(x,F(y,z)))[/itex]


2)[itex]\forall xG(F(x,c),x)[/itex]


3)[itex]\forall x\exists yG(F(x,y),c)[/itex]


4)[itex]\forall x\forall yG(F(x,y),F(y,x))[/itex].


5) [itex]\forall x\forall y\forall z ( G(x,y)\wedge G(x,z)\Longrightarrow G(y,z))[/itex]

Where G is a two place predicate symbol. F ,is a two place term symbol and c is a constant.


Prove :[itex]\exists! y\forall xG(F(x,y),x)[/itex]

[itex]\exists ! y[/itex] means : there exists a unique y
Phys.Org News Partner Science news on Phys.org
Hoverbike drone project for air transport takes off
Earlier Stone Age artifacts found in Northern Cape of South Africa
Study reveals new characteristics of complex oxide surfaces