View Single Post
albarnett17
#1
Mar9-12, 10:02 AM
P: 8
A 1000-kg car moves at a maximum speed so that it does not skid off the 50-m radius level track. If the coefficient of static friction between the road and wheels is 0.80. What is the maximum speed? Assume that the gravitational constant is 10.0 N/kg =10.0 m/s. Use the simulations in 4.5 Car Circles a Track to check your answers.


Write an equation for the vertical y-component form of Newton's second law. Determine the magnitude of the normal force. Then use a force law equation to determine the magnitude of the static friction force.


Write an equation for the radial component form of Newton's second law. Use this to determine the maximum speed that the car can travel so that it does not skid (so that friction can provide the needed force to keep the car moving in a circle). Once you have calculated the maximum speed adjust the speed slider in the 4th simulation to this speed and see if the car stays on the track.
Phys.Org News Partner Physics news on Phys.org
Physicists discuss quantum pigeonhole principle
First in-situ images of void collapse in explosives
The first supercomputer simulations of 'spin?orbit' forces between neutrons and protons in an atomic nucleus