View Single Post
 P: 3 Hi, Thanks for your reply. I finally figured out that I mixed up the entropy of the environment with the entropy of the system, because my idea was that the total system, so environment + system, could be described by the microcanonical ensemble and I could use Boltzmann's formula, but then you will end up with something different: The system including its environment can be described as a microcanonical ensemble. The number of possible configurations for this ensemble are ##\Omega_{total} = \sum_i w_i## where ##w_i## denotes the number of possible configurations given an ##\epsilon_i##. We know $$w_i = \Omega (E-\epsilon_i) \Omega (\epsilon_i)$$ (with ##\Omega (\epsilon_i) = 1##, ##\Omega (E-\epsilon_i)## the number of microstates of the system when its energy equals ##E-\epsilon_i## and ##\Omega (E)## the number of microstates of the environment, when it is not thermally connected to another system) and thus $$\Omega_{total} = e^{S_{total}/k} = e^{S/k} e^{S_{env}/k} = e^{\beta (U - F)} \Omega_{env} = \sum_i \Omega (E - \epsilon_i) = \Omega (E) \sum_i e^{-\beta \epsilon_i} = \Omega (E) e^{-\beta F}$$ This simplifies to $$\Omega_{env} = \Omega (E) e^{-\beta U}$$ Do you know if this is correct, because I have never seen this result before. It does seem okay to me though.