Register to reply

Are boson fields the adjoint of the fermionic field they couple to?

by a dull boy
Tags: adjoint, boson, couple, fermionic, field, fields
Share this thread:
a dull boy
#1
Mar2-12, 11:38 AM
P: 33
Dear Physics Forum,

I read this on a wikipedia site

"Technically, QCD is a gauge theory with SU(3) gauge symmetry. Quarks are introduced as spinor fields in Nf flavors, each in the fundamental representation (triplet, denoted 3) of the color gauge group, SU(3). The gluons are vector fields in the adjoint representation (octets, denoted 8) of color SU(3)."

and I wanted to know if spin 1 boson fields are always the adjoint of the spin 1/2 fermionic field they couple to, and if so, what does this accomplish mathematically?

Thanks, Mark
Phys.Org News Partner Physics news on Phys.org
Engineers develop new sensor to detect tiny individual nanoparticles
Tiny particles have big potential in debate over nuclear proliferation
Ray tracing and beyond
fzero
#2
Mar2-12, 12:31 PM
Sci Advisor
HW Helper
PF Gold
P: 2,602
The gauge fields are always in the adjoint representation. There's a few reasons for this, but the most basic is that there needs to be a gauge field for every generator of the gauge group. The adjoint representation is the unique representation that has the same dimension as the group itself.

This has nothing to do with the representations of the matter fields. Nature has somehow chosen that quarks are in fundamental representations, but it is possible to write down gauge theories with matter in other representations.
Ilmrak
#3
Mar2-12, 12:38 PM
P: 97
Quote Quote by a dull boy View Post
Dear Physics Forum,

I read this on a wikipedia site

"Technically, QCD is a gauge theory with SU(3) gauge symmetry. Quarks are introduced as spinor fields in Nf flavors, each in the fundamental representation (triplet, denoted 3) of the color gauge group, SU(3). The gluons are vector fields in the adjoint representation (octets, denoted 8) of color SU(3)."

and I wanted to know if spin 1 boson fields are always the adjoint of the spin 1/2 fermionic field they couple to, and if so, what does this accomplish mathematically?

Thanks, Mark
Note that the statement on wiki is not that gluons are the adjoint of quarks, but that they are in the adjoint representation of color.

Ilm

a dull boy
#4
Mar6-12, 08:47 AM
P: 33
Are boson fields the adjoint of the fermionic field they couple to?

Thanks very much, I find this forum very helpful -Mark


Register to reply

Related Discussions
Why the carrying force fields must be the fields of Boson particles? Quantum Physics 2
Does the Z boson couple to photons? High Energy, Nuclear, Particle Physics 7
Why are gauge fields in the adjoint rep? High Energy, Nuclear, Particle Physics 4
Fields- a couple of questions Linear & Abstract Algebra 19
Boson Fields Quantum Physics 3