Register to reply

Why mole and kelvin are basic units?

by jd12345
Tags: basic, kelvin, mole, units
Share this thread:
jd12345
#1
Dec3-12, 07:06 AM
P: 260
Mole is just a number. It doesn't really measure anything so why is it a fundamental unit?
And with kelvin - it represents the average energy of the atoms/molecules in a compound. Why is it a fundamental unit? Temperature can easily be represented in joules.
Phys.Org News Partner Physics news on Phys.org
Mapping the optimal route between two quantum states
Spin-based electronics: New material successfully tested
Verifying the future of quantum computing
jedishrfu
#2
Dec3-12, 07:21 AM
P: 2,812
So,moe of the mole usage, history units of measure controversy is described in the wikipedia article:

http://en.wikipedia.org/wiki/Mole_(unit)
jd12345
#3
Dec3-12, 07:30 AM
P: 260
I have basically the same point as the wikipedia article states. So why is it still called a fundamental unit?
Also for kelvin - why is it a fundamental unit as it represents energy

the_emi_guy
#4
Dec3-12, 07:44 AM
P: 585
Why mole and kelvin are basic units?

As you said, it is just a word that represents a count, much like the word "dozen" or "gross". Do you understand why we need such as number in chemistry? In the chemistry lab you are measuring out quantities in grams, but you need to keep track of how many elementary entities you have, not in absolute terms but relative to other substance that you are also measuring in grams. Have you studied stoichiometry problems yet?

The kelvin temperature scale is unique in that 0 degrees represents the lowest possible temperature, where all thermal motion ceases.
jd12345
#5
Dec3-12, 07:49 AM
P: 260
Well I do understand why we need mole. But why is it a fundamental unit.?
You can just define mole to be 6.022 * 10^23 and use the word.
f95toli
#6
Dec3-12, 07:52 AM
Sci Advisor
PF Gold
f95toli's Avatar
P: 2,241
Fundamental units are called "fundamental" because there is no practical way to express them in terms of other units.
The fundamental units in the SI are there because 1) They are usedful and 2) They can be realized, i.e. it is something that can be measured and used to calibrate instruments.

It is important to understand that the SI is a practical system of units, ultimately it is is system designed in such a way that we can calibrate instruments in a self-consistent way.

This is why the mole and the Kelvin are there, there is no way to express in in terms of other fundamental units in a way that can be used for calibration/comparissons; and both the mole and the Kelvin are (obviously) very important units so they have to be fundamental.
jd12345
#7
Dec3-12, 08:11 AM
P: 260
Oh I had the wrong idea of what a fundamental unit is. I thought it should represent something physical which we can measure.
Okay now mole and kelvin makes sense. Thank You!
jtbell
#8
Dec3-12, 08:13 AM
Mentor
jtbell's Avatar
P: 11,626
Quote Quote by jd12345 View Post
You can just define mole to be 6.022 * 10^23 and use the word.
In fact, there is a proposal to do exactly this (with a slightly different constant), which may be considered for adoption by the "authorities" in 2014:

http://en.wikipedia.org/wiki/New_SI_definitions#Mole
D H
#9
Dec3-12, 08:20 AM
Mentor
P: 15,067
Quote Quote by jd12345 View Post
Temperature can easily be represented in joules.
No, it can't. For one thing, temperature is an intensive property while energy is an extensive property. Temperature in some simple cases can be represented as energy per mole, perhaps, but not energy.

Even in those simple cases (i.e., ideal gases), using energy/mole in lieu of temperature doesn't quite cut it. Consider a vessel that contains two gases separated by an impermeable wall that transmits heat. Put some quantity of an ideal gas in one half, some quantity of another ideal gas in the other half. Heat will be transferred across the wall from one gas to the other if the two gases are at different temperatures. Heat may or may not be transferred if the two gases have different specific energies. For example, one gas is monatomic, the other diatomic.

Real gases aren't ideal, making the relationship between temperature and specific energy a non-linear one. Things get even worse when you consider the fact that gases can condense, liquids can freeze, chemicals can combine. The concept of temperature is very useful and is measurable. Specific energy is less useful, plus how do you measure it?
jtbell
#10
Dec3-12, 10:08 AM
Mentor
jtbell's Avatar
P: 11,626
In statistical mechanics, we can define temperature via

$$\frac{1}{T} = {\left( \frac{\partial S}{\partial U} \right)}_{N,V}$$

where ##S = k \ln \Omega## (##\Omega## being the multiplicity of the system).

If we wanted to be really fundamental about units, we would make entropy a fundamental quantity, and use the numerical value of k to define the unit of entropy which we might call the "boltzmann" (B).

Then the kelvin would be a derived unit: 1 K = 1 J/B.
f95toli
#11
Dec3-12, 10:40 AM
Sci Advisor
PF Gold
f95toli's Avatar
P: 2,241
kB will -unless I am misstaken- actually be defined in 2014. The general "philosophy" of the new SI (which is slowly being introduced) is to have one fundamental constant per unit and then realize the unit by e.g. counting (similar to what we do with the meter and the speed of light).
Hence, the Boltzmann, Avogadros constant, e etc will all eventually be defined to have definite values.
_Abstraction_
#12
Dec3-12, 11:18 AM
P: 2
A mole is just a number like "dozen", it's not a unit of measurement since it doesn't measure anything. A meter is a measurement of length, a second is a measurement of time, a gram is a measurement of mass, and a kelvin is a measurement of temperature, but a mole isn't a measurement of anything.
f95toli
#13
Dec3-12, 11:26 AM
Sci Advisor
PF Gold
f95toli's Avatar
P: 2,241
Quote Quote by _Abstraction_ View Post
A mole is just a number like "dozen", it's not a unit a measurement since it doesn't measure anything. A meter is a measurement of length, a second is a measurement of time, a gram is a measurement of mass, and a kelvin is a measurement of temperature, but a mole isn't a measurement of anything.
It is a unit of measurement in the SI. This is if you want a political decision more than a a scientific one (but again, the reason is that is practical and useful to let it be a base unit).
Since Avogadro's constant is not a defined number you can't -at the moment- use that to realise the Mole. Hence, there are other methods for realising the mole, but neither of them directly involves counting anything.
Khashishi
#14
Dec3-12, 12:01 PM
P: 886
Basically, Boltzmann's constant is just a historical artifact. It should be regarded as a unit conversion factor between energy and temperature units. In plasma physics, and several other fields, temperature is measured in units of energy (typically electron volts), dispensing with Boltzmann's constant.

D H: Temperature and energy don't have to mean the same thing to use the same units.
jtbell: In statistical mechanics, (fundamental) entropy is unitless, being nothing more than the natural logarithm of a number of states. Temperature has the units of energy/entropy, which, therefore, is just the units of energy.

The equipartition theorem states that the average energy in an accessible degree of freedom is 1/2 the temperature times the Boltzmann's constant. If we get rid of the Boltzmann's constant, we can just give temperature in energy units, which is a lot more natural and simple.
ThinkerofWhat
#15
Dec3-12, 12:53 PM
P: 4
Quote Quote by _Abstraction_ View Post
A mole is just a number like "dozen", it's not a unit of measurement since it doesn't measure anything. A meter is a measurement of length, a second is a measurement of time, a gram is a measurement of mass, and a kelvin is a measurement of temperature, but a mole isn't a measurement of anything.
A mole is the number of atoms that have a mass of 1 gram of hydrogen (single atoms, not H2). It is not arbitrary. Comparitively, the periodic table has on it the atomic mass of each element. You'll note that the atomic mass of hydrogen is not exactly 1 gram/mole, I think this is due to more accurate measurements, or the inclusion of isotopes. The atomic mass of each element on the periodic table is a per mole measurement, all relating to hydrogen's mass. As such, you can determine how much more massive each element is (per quantity) than hydrogen (per same quantity).

Since you can determine the quantity of molecules or atoms of a substance by it's molecular mass/mole, you can figure out how many grams of a substance to add to another substance to predict a chemical reaction.(because molecules combine in predictable quantities with other molecules)

The 'gram' measurement is related to the mass of one cubic centimetre of H20. A meter is the length of 100 cm, and is otherwise recorded somewhere as the number of wavelengths of a certain frequency of light, or the distance light travels in a certain time. I think that length is a truly arbitrary value (check an historical reference), and water is an arbitrarity chosen element (for historically obvious reasons).
DrDu
#16
Dec3-12, 01:25 PM
Sci Advisor
P: 3,564
Quote Quote by jtbell View Post
If we wanted to be really fundamental about units, we would make entropy a fundamental quantity, and use the numerical value of k to define the unit of entropy which we might call the "boltzmann" (B).
The problem with statistical entropy is that to use it as a fundamental quantity we would have to be able to count and identify all the relevant microstates. I don't see that we have even an idea to do so for a real system.
jbriggs444
#17
Dec3-12, 03:04 PM
P: 907
Quote Quote by ThinkerofWhat View Post
A mole is the number of atoms that have a mass of 1 gram of hydrogen (single atoms, not H2).
While this was the original definition, the current definition is the number of atoms in a mass of 12 grams of carbon-12.

http://en.wikipedia.org/wiki/Mole_(unit)
the_emi_guy
#18
Dec3-12, 03:23 PM
P: 585
Quote Quote by Khashishi View Post

The equipartition theorem states that the average energy in an accessible degree of freedom is 1/2 the temperature times the Boltzmann's constant. If we get rid of the Boltzmann's constant, we can just give temperature in energy units, which is a lot more natural and simple.
Interesting idea, but is it practical? Let's say I am in a biology lab and I need to measure the temperature of a blood sample. To have the thermometer read out in units of energy, it would have to be calibrated to the specific heat of this particular blood sample.


Register to reply

Related Discussions
Process Engineering - Mole Ratio and mole fractions Biology, Chemistry & Other Homework 4
Calculating 100ml with a mole vs mole ratio Biology, Chemistry & Other Homework 0
Basic Units Introductory Physics Homework 2
Basic Mole Concept Questions, Grade 11 Chem Biology, Chemistry & Other Homework 6
Units - Watts, meters & Kelvin Introductory Physics Homework 4