triple integrals


by Dx
Tags: integrals, triple
Dx
#1
Jun29-03, 04:45 PM
P: n/a
Compute triple integral f(x,y)dV given f(x,y,z)=2x+3y. T is the tetrahedron bounded by the coordinate planes and first octant part of the plane with equation 2x + 3y + z = 6.

how do i solve for this, can someone get me started halfway, plz?
Dx [g)]
Phys.Org News Partner Mathematics news on Phys.org
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
Pseudo-mathematics and financial charlatanism
anomaly
anomaly is offline
#2
Jun30-03, 04:22 AM
P: 17
I dont know if you have solved this problem already, but here goes:

The first step you will want to do is draw two diagrams, one of the solid, and one projection of it on the x-y plane.

Then solve the equation for z (or x or y whichever is going to produce the easiest integral outcome).

In this case I would go for the z solution:
z=2x+3y-6
Then determine the axis intersections in order to find the integral limits.
Set up your triple integral, solve.[6)]
HallsofIvy
HallsofIvy is offline
#3
Jun30-03, 08:40 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,877
The "innermost" integral will be with respect to z (dz) and will have limits z= 0 to z= 6- 2x- 3y.

"projecting" down to the x,y plane (z= 0) gives the line where the plane 2x+ 3y+ z= 6 crosses the x,y plane: 2x+ 3y= 6. We need to integrate over the triangle with edges x=0, y=0, 2x+ 3y= 6.

Solving for y, y= 2- (2/3)x. The second integral will be with respect to y (dy) and will have limits y= 0 and y= 2-(2/3)x.

Finally, project to the x-axis itself. The line 2x+3y= 6 crosses the x-axis when y= 0: 2x= 6 or x= 3. The final integral will be with respect to x (dx) and will have limits x= 0, x= 3.

The triple integral you want is

integral (x=0 to 3) integral (y=0 t0 2-(2/3)x) integral (z= 0 to 6- 2x+3y)(2x+3y)dzdydx.


Register to reply

Related Discussions
using triple integrals Calculus & Beyond Homework 0
triple integrals Calculus & Beyond Homework 2
Triple Integrals Introductory Physics Homework 2
Triple integrals Calculus 5
Using Triple Integrals Calculus 5