Register to reply

General question about E-L in revativity

by noamriemer
Tags: revativity
Share this thread:
noamriemer
#1
Jan10-12, 11:54 AM
P: 50
Hello! I ask this question in this forum because I wish to be given a general explanation.
Hope it is OK

given this metric:
[itex] ds^2= \frac {dt^2} {t^2}- \frac{dx^2} {t^2} [/itex]
I wish to calculate the geodesics.

[itex] S=\int{ \frac {d} {d\lambda} \sqrt{\frac {1} {t^2} \frac {dt^2} {d\lambda^2}- \frac{1} {t^2} \frac {dx^2} {d\lambda^2}}} [/itex]

But [itex] \lambda [/itex] here, is any parameter I choose. Therefore, L does not depend on it (right? )
So now I want to use E-L equations:

[itex] \frac {d}{dλ}\frac {∂L}{∂\dot t}=\frac {\partial L} {∂t},
\frac {d} {dλ}\frac {∂L} {∂\dot x} =\frac {\partial L} {∂x} [/itex]

When [itex] \dot t [/itex] refers to [itex] \frac {dt} {d\lambda} [/itex] etc.
But here I get confused:
What does L depend on?
I'll continue my solution:

[itex]\frac {d} {dλ} 0.5 ({{\frac {{\dot t}^2} {t^2}-\frac {{\dot x}^2} {t^2}}})^{-0.5} 2 \frac {\dot t} {t^2}= \frac {\partial L} {\partial x} [/itex]

As I stated, L does not depend on lambda, and so:

[itex] \frac {d} {d\lambda} {[\frac {\dot t} {t^2}]}^2 = \frac {{\dot t}^2-{\dot x}^2} {t^3} [/itex]
So how am I supposed to derive this? Do I add another dot?
[itex] \frac {d} {d\lambda} \dot t = \ddot t [/itex] ? and do I refer to it as an operator? Meaning- [itex] \ddot t = {\dot t}^2? [/itex]

How do I continue? These calculations on classical mechanics were so trivial to me- but for some reason I get lost in here...
Thank you!
Phys.Org News Partner Science news on Phys.org
Mysterious source of ozone-depleting chemical baffles NASA
Water leads to chemical that gunks up biofuels production
How lizards regenerate their tails: Researchers discover genetic 'recipe'
Bill_K
#2
Jan10-12, 06:02 PM
Sci Advisor
Thanks
Bill_K's Avatar
P: 4,160
noamriemer, There are several different equivalent Lagrangians that may be used to calculate the geodesics. The easiest, I believe, is to use L = gμν dxμ/ds dxν/ds. This eliminates dealing with the square root. So for your case, L = t-2 (dt/ds)2 - t-2 (dx/ds)2. You let t' = dt/ds and x' = dx/ds for short, and write the equations as, for example, d/ds(∂L/∂t') - ∂L/∂t = 0.


Register to reply

Related Discussions
General question Mechanical Engineering 1
General Question about Gravitational Potential & General Relativity Special & General Relativity 4
Question about how to study physics; general question all input is allowed THANKS Academic Guidance 4
General Question Academic Guidance 1
General Q.M. question Quantum Physics 3