Recent content by AKG
-
A
Undergrad Example of onto function R->R^2
@Aziza, what do you mean by "any t \in \mathbb{R}". If your f is a function, then for a given input x, you need to specify a unique output f(x). E.g. f(1) can only be one point in the plane, you can't have f(1) = (1, 0), and also f(1) = (1,1), and also f(1) = (1, -\pi), and so on. Since I...- AKG
- Post #3
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Satisfiability vs Elementary equivalence
If B satisfies s, then it doesn't satisfy -s, hence A doesn't satisfy -s, hence A satisfies s.- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Justin T. Moore: Why Every Size \aleph_1 Has Measure Zero
It definitely uses extra axioms, indeed it can't follow from ZFC alone since it would contradict CH, which is consistent with ZFC. Whenever you see something like: Theorem: <Statement> It means the <Statement> is a theorem of ZFC. Whenever you see: Theorem: (<Axiom(s)>) <Statement> It...- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Lowenheim-Skolem and Constructive
One can give an explicit set of instructions to construct the model, but the process is rather indirect and might not be what you're looking for. That is, there's a positive answer to your question about whether there is a prescription, you just might not like the taste of it. At any rate...- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate CDF and PDF of order statistics
EDIT: Oops, sorry, when I said it was clear that the X_i+X_j are clearly iid I was mistaken. I'm not sure that they're not independent, but if they are independent, it certainly isn't clear. -------- The CDF of this random variable, let's call it X, is given by: a \mapsto P(X < a)...- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Show that Zorns lemma follows from AC
Assume choice and let (P,<) be a poset satisfying the hypotheses of Zorn's Lemma, but failing to have a maximal element. Let X be the collection of subsets of P which are well-ordered by <. Let F : X \to \mathcal{P}(P)\setminus \{\emptyset\} be such that F(x) is the set of all strict upper...- AKG
- Post #3
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate An actual first-order formulation of ZFC?
ZFC is a first order theory, where have you been seeing second order formulations? I'm sure every one of the top Google results for "ZFC axioms" will give you a first order formulation. In particular, Wikipedia.- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Must all models of ZFC (in a standard formulation) be at least countable?
Yes, they're all at least countable, because they all have an empty set, a set containing just the empty set, a set containing just the set containing just the empty set, etc. Your argument using Replacement doesn't work, since there's no guarantee that two different instances of Replacement...- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Paradox with elementary submodels of the constructible tower
Correct. Another simple argument is to do the following construction: X_0 = Hull(\{\beta\},L_{\alpha}) \beta_0 = \min\{\gamma : X_0 \subset L_\gamma\} X_{n+1} = Hull(L_{\beta_n},L_\alpha) \beta_{n+1} = \min\{\gamma : X_n \subset L_\gamma\} L_{\beta'} = \bigcup X_n Here Hull(X,M) denotes some...- AKG
- Post #4
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Paradox with elementary submodels of the constructible tower
"The union of elementary submodels is itself an elementary submodels" is only true when those submodels are elementary substructures of one another. This means more than just the fact that L_{\alpha_n} \subset L_{\alpha_{n+2}} and L_{\alpha_n} \equiv L_{\alpha_{n+2}}, it requires that the...- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
How Can You Simplify a 3x3 Matrix Determinant with Variables a and b?
I recommend just computing the determinant and doing some simple algebra to factor the resulting expression.- AKG
- Post #2
- Forum: Calculus and Beyond Homework Help
-
A
Undergrad Generate a uniform random vector
This is not possible for n>2. If x_i \sim \mathrm{Unif}(0,1) for i = 1, \dots, n, then 1-x_n \sim \mathrm{Unif}(0,1) as well. But if they sum to 1, then this means x_1+\dots +x_{n-1} \sim \mathrm{Unif}(0,1). But \mathbb{E}[x_1+\dots x_{n-1}] = \frac{n-1}{2} \neq \frac 12- AKG
- Post #24
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Understanding the recursion theorem
Hmmm, what you're saying definitely isn't right. You're not mentioning \phi at all. We've got our set of natural numbers \mathbb{N} = \{ 0, 1, 2, \dots \}. And then we've got some other random set a. Now we can talk about functions from \mathbb{N} to a. We can imagine the collection of all...- AKG
- Post #6
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Graduate Understanding the recursion theorem
They construct the fixed point of \phi. They call this fixed point L_0, and they give you a recursive definition of this function, although admittedly their description is a bit confusing because it involves this intermediate definition of the functions \phi_n. Let's make sure you understand...- AKG
- Post #2
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Proving Open Mapping of Canonical Projection in Normed Vector Space
What does the fact that x\in U with U open tell you? Based on what that gets you, you should be able to think of a candidate for the desired open neighbourhood containing [x] and contained in \phi(U).- AKG
- Post #2
- Forum: Calculus and Beyond Homework Help