Recent content by DanniHuang
-
D
Find the residues of the function
If I turn everything into z-∏, do we need to use the same method as I used to work out z=0 and z=\frac{∏}{2}? But how? Turn the limit to z-∏→0? Because I used computer to work out the answer of z=∏ which is -1. But I still cannot get this answer by myself.- DanniHuang
- Post #3
- Forum: Calculus and Beyond Homework Help
-
D
Find the residues of the function
Homework Statement Find the residues of the function Homework Equations f(z)=\frac{1}{sin(z)} at z=0, \frac{∏}{2}, ∏ The Attempt at a Solution Since the function has a simple pole at z=0 I used: Res(f,0)=lim_{z->0}(z-0)\cdot\frac{1}{sin(z)}=1. This means the residue of the function at z=0...- DanniHuang
- Thread
- Function
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
D
Use Cauchy Residue Theorem to find the integral
Homework Statement To find the integral by Cauchy Residue Theorem and apply substitution method. Homework Equations To show: ∫^{2∏}_{0}\frac{cosθ}{13+12cosθ}=-\frac{4∏}{15} The Attempt at a Solution The solution I have done is attached. It is different as what the question wants me...- DanniHuang
- Thread
- Cauchy Integral Residue Theorem
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
D
Finding Entire Functions Satisfying Specific Conditions
So n can only be even numbers with the Ʃa_{n}z^{n}=\frac{1}{n^{2}}. And then?- DanniHuang
- Post #4
- Forum: Calculus and Beyond Homework Help
-
D
Finding Entire Functions Satisfying Specific Conditions
Homework Statement To find entire functions which satisfy g(\frac{1}{n}) = g(-\frac{1}{n}) = \frac{1}{n^{2}} Homework Equations How many functions can be found? The Attempt at a Solution Because the function is entire, it can be expanded in the Taylor series. But how can I work out the...- DanniHuang
- Thread
- Function
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
D
Use Cauchy Integral Formula to evaluate the integral
Homework Statement The question is needed to be done by using an appropriate substitution and the Cauchy Integral Formula. Homework Equations Evaluate the complex integral: ∫e^(e^it) dt, from 0 to 2∏ The Attempt at a Solution I cannot find an appropriate substitution for the integral.- DanniHuang
- Thread
- Cauchy Formula Integral
- Replies: 1
- Forum: Calculus and Beyond Homework Help