I now consider the conservation of momentum and get ##v^2 =\frac{gR(1-cos\theta)}{1+\frac{m}{M}}##. Working in the frame of hemisphere, I get an equation of ##N-mgcos\theta +masin\theta = \frac{mv^2}{R}## where ma is the pseudo force as the hemisphere is accelerating leftward. In case of the...
I think the angular velocity keep increasing on the plane with friction and the translational velocity keep decreasing due to friction while the total kinetic energy is conserved. When it moves to the frictionless plane, all energy converts to translational kinetic energy and it stop rolling...
The kinetic energy of a rotating rigid body is given by K=1/2mv^2 + 1/2Iw^2 but how to determine the proportion of translational energy and rotational energy? I know that if the mass distribution is more concentrated at its center mass, then more energy goes to the translational part. But is...
As I'll measure the distance spanned by several bright fringes and then determine the fringe separation. I think more fringes will lead to a better evaluation of fringe separation.
The diffraction effect will enhance as the wavelength has increased, so the bright fringes will span wider. If the number of bright fringes has increased, the measurement will be more accurate.
Simple high school experiment. According to Δy=λD/a, where D is the distance between the screen and the double slit, Δy is the distance between fringes, λ is the wavelength of laser light, and a is the separation of the double slit. All variables except a are known. The aim of the experiment is...