But there are different ways I can go from A to B. Does this mean that the voltage drop is independent of which path I choose to go? (I assume that I can't go over the same path)
I really don't have any clue why the total voltage is equal to the voltage drop over the 3 Ω and 2 Ω resistors and independent of the 4 Ω resistor . Does it have to do with parallel circuits?
Firstly I only consider one of the wheels. This wheel consists of a big wheel (black) with mass M and radius R and inside it a circular region with a negative mass (-m) and radius R/2. (I assume they have same mass density but with opposite signs. I do this because I don't know where the center...
Why Is the normal force in this case not just ##N=mg sin\theta## ?? This is already the component of mg which is perpendicular to the surface. And since you have written ## N= \frac{mg cos \theta}{\mu}##, then I guess the frictional force is ## mg cos \theta##. Why is the frictional force the...