z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2}
\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z}...