MHB Algebra help - a race around a regular polygon

AI Thread Summary
Bert and Ernie are running around a regular polygon with x sides, each side measuring 12 meters, starting from the same point but in opposite directions. Bert runs at twice the speed of Ernie, leading to a scenario where their combined distances equal the perimeter of the polygon. When they meet, Bert will have covered two-thirds of the perimeter while Ernie will have covered one-third. The total distance they run together equals the polygon's perimeter, calculated as 12x meters. Thus, Ernie will have traveled 4x meters when they meet.
aileenmarymolon
Messages
2
Reaction score
0
Bert and Ernie are running around a regular polygon with x sides, all of length 12m. They start from the same point and run in opposite directions. If Bert is twice as fast as Ernie, how far will Ernie have traveled when they meet?
 
Mathematics news on Phys.org
Re: algebra help

aileenmarymolon said:
Bert and Ernie are running around a regular polygon with x sides, all of length 12m. They start from the same point and run in opposite directions. If Bert is twice as fast as Ernie, how far will Ernie have traveled when they meet?

Hello and welcome to MHB! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
Re: algebra help

I don't really know where to begin with this question. I know that Speed=distance / Time and that is about it.
 
Re: algebra help

aileenmarymolon said:
I don't really know where to begin with this question. I know that Speed=distance / Time and that is about it.

Well... what is the circumference of the polygon? (Wondering)

Suppose Ernie runs with a speed of 1 m/s, then Bert runs with a speed of 2 m/s.
How far will they have run after, say, 10 seconds?
After x seconds?
And after 2x seconds?
 
First, if they start at the same time, they will have run for the same time when they meet. Since Bert runs twice as fast as Ernie, he will have run twice as far as Ernie. That means that Bert will have run 2/3 of the way around the track and Ernie 1/3.
 
aileenmarymolon said:
Bert and Ernie are running around a regular polygon with x sides, all of length 12m.
They start from the same point and run in opposite directions.
If Bert is twice as fast as Ernie, how far will Ernie have traveled when they meet?
Bert's speed is twice that of Ermie.
Hence, Bert's distance (for a particular time) is twice that of Ernie.

When they first meet, their total distance is the perimeter, P = 12x meters.

Bert's distance is \tfrac{2}{3}P.
Ernie's distance is \tfrac{1}{3}P

Therefore . . .
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top