I Simulating physics: the current status of lattice field theories

Click For Summary
The discussion centers on the challenges of simulating fermionic fields in lattice field theories, particularly referencing David Tong's insights on the Nielsen–Ninomiya theorem, which states that local, Hermitian, and translation-invariant actions require extra fermions. While some participants agree with this theorem, others argue that locality and Hermiticity are not inherently problematic, and that translation invariance is inherently violated on a lattice. The Wilson fermion method is favored by some as a solution, despite its need for fine-tuning. There is also a perspective that the Standard Model should be viewed as an effective field theory, with the focus on producing accurate long-range correlation functions rather than strict adherence to the theorem. Overall, the simulation of quantum field theories remains a complex and evolving area of research.
ErikZorkin
Messages
104
Reaction score
6
I recently watched this video by David Tong on computer simulation of quantum fields on lattices, fermionic fields in particular. He said it was impossible to simulate a fermionic field on a lattice so that the action be local, Hermitian and translation-invariant unless extra fermions get introduced. This is known as the Nielsen–Ninomiya theorem.
David Tong mentioned that simulating physics (to be precise, quantum field theories) remains one the most challenging problems of physics and just a handful of people are currently working on it.

Question: what is currently the most accepted method of simulating a lattice field theory? In particular, what conditions of the said theorem does the Susskind's staggered fermion model discard and what is the physical implications?
 
Physics news on Phys.org
ErikZorkin said:
He said it was impossible to simulate a fermionic field on a lattice so that the action be local, Hermitian and translation-invariant unless extra fermions get introduced. This is known as the Nielsen–Ninomiya theorem.
I don't think that's exactly true. What is impossible is to make the action chiral, but locality and hermiticity should not be a problem. Translation invariance is violated on lattice by definition, I think no one even tries to avoid it. My favored method for dealing with the problem of lattice fermions is the Wilson fermions, which requires fine tuning but I don't think it's such a big problem.

For more details see also Tong's lectures https://www.damtp.cam.ac.uk/user/tong/gaugetheory.html Sec. 4.
 
  • Like
Likes bhobba, atyy, PeroK and 3 others
Thanks for the pointers. I enjoy Tong's videos, but I find the particular emphasis on the Nielsen-Ninomiya theorem misplaced. I don't consider any fields of the Standard Model fundamental; the Standard Model is an effective field theory sharing "long" wavelength features with the true theory (which we do not yet have). There's no problem at all with Fermion doubling, since the lattice itself is an approximation. All that matters is that the numerical simulations produce reasonable "long" range correlation functions.
 
  • Like
Likes bhobba and Demystifier
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
87
Views
9K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
976
  • · Replies 43 ·
2
Replies
43
Views
4K
Replies
2
Views
1K
  • · Replies 75 ·
3
Replies
75
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
3K