http://arxiv.org/abs/1309.0777
Coupling and thermal equilibrium in general-covariant systems
Goffredo Chirco, Hal M. Haggard, Carlo Rovelli
(Submitted on 3 Sep 2013)
A fully general-covariant formulation of statistical mechanics is still lacking. We take a step toward this theory by studying the meaning of statistical equilibrium for coupled, parametrized systems. We discuss how to couple parametrized systems. We express the thermalization hypothesis in a general-covariant context. This takes the form of vanishing of information flux. An interesting relation emerges between thermal equilibrium and gauge.
8 pages, 3 figures
http://arxiv.org/abs/1309.0652
Non-abelian Gauge Fields from Defects in Spin-Networks
Deepak Vaid
(Submitted on 3 Sep 2013)
Effective gauge fields arise in the description of the dynamics of defects in lattices of graphene in condensed matter. The interactions between neighboring nodes of a lattice/spin-network are described by the Hubbard model whose effective field theory at long distances is given by the Dirac equation for an
emergent gauge field. The spin-networks in question can be used to describe the geometry experienced by a non-inertial observer in flat spacetime moving at a constant acceleration in a given direction. We expect such spin-networks to describe the structure of quantum horizons of black holes in loop quantum gravity. We argue that the abelian and non-abelian gauge fields of the Standard Model can be identified with the emergent degrees of freedom required to describe the dynamics of defects in symmetry reduced spin-networks.
6 pages.
http://arxiv.org/abs/1309.0804
On-shell Techniques and Universal Results in Quantum Gravity
N.E.J Bjerrum-Bohr, John F. Donoghue, Pierre Vanhove
(Submitted on 3 Sep 2013)
We compute the leading post-Newtonian and quantum corrections to the Coulomb and Newtonian potentials using the full modern arsenal of on-shell techniques; we employ spinor-helicity variables everywhere, use the Kawai-Lewellen-Tye (KLT) relations to derive gravity amplitudes from gauge theory and use unitarity methods to extract the terms needed at one-loop order. We stress that our results are universal and thus will hold in any quantum theory of gravity with the same low-energy degrees of freedom as we are considering. Previous results for the corrections to the same potentials, derived historically using Feynman graphs, are verified explicitly, but our approach presents a huge simplification, since starting points for the computations are compact and tedious index contractions and various complicated integral reductions are eliminated from the onset, streamlining the derivations. We also analyze the spin dependence of the results using the KLT factorization, and show how the spinless correction in the framework are easily seen to be independent of the interacting matter considered.
34 pages, 7 figures
http://arxiv.org/abs/1309.0713
Projective Structures in Loop Quantum Cosmology
Maximilian Hanusch
(Submitted on 3 Sep 2013)
Projective structures have successfully been used for the construction of measures in the framework of loop quantum gravity. In the present paper we establish such a structure for the space R ⊔ R
Bohr recently constructed in the context of homogeneous isotropic loop quantum cosmology. This space has the advantage to be canonically embedded into the quantum configuration space of the full theory, but, in contrast to the traditional space R
Bohr there exists no Haar measure on R ⊔ R
Bohr. The introduced projective structure, however, allows to construct a family of canonical measures on R ⊔ R
Bohr whose corresponding Hilbert spaces of square integrable functions we finally investigate.
29 pages
brief mention, not Loop-and-allied QG but of general interest:
http://arxiv.org/abs/1309.0773
Quantum Weak Measurements and Cosmology
Paul Davies
(Submitted on 3 Sep 2013)
The indeterminism of quantum mechanics generally permits the independent specification of both an initial and a final condition on the state. Quantum pre-and-post-selection of states opens up a new, experimentally testable, sector of quantum mechanics, when combined with statistical averages of identical weak measurements. In this paper I apply the theory of weak quantum measurements combined with pre-and-post-selection to cosmology. Here, pre-selection means specifying the wave function of the universe or, in a popular semi-classical approximation, the initial quantum state of a subset of quantum fields propagating in a classical back-ground spacetime. The novel feature is post-selection: the additional specification of a condition on the quantum state in the far future. I discuss "natural" final conditions, and show how they may lead to potentially large and observable effects at the present cosmological epoch. I also discuss how pre-and-post-selected quantum contrast to the expectation value of the stress-energy-momentum tensor, resolving a vigorous debate from the 1970's. The paper thus provides a framework for computing large-scale cosmological effects arising from this new sector of quantum mechanics. A simple experimental test is proposed.
15 pages.
http://arxiv.org/abs/1309.0792
Measurements according to "Consistent Quantum Theory"
Elias Okon, Daniel Sudarsky
(Submitted on 3 Sep 2013)
We critically evaluate the treatment of the notion of measurement in the Consistent Histories approach to quantum mechanics. We find such treatment unsatisfactory because it relies, often implicitly, on elements external to the provided formalism. In particular, when dealing with measurement scenarios, the formalism, in order to be informative, needs to assume that after measurements measuring apparatuses are always in states of well defined pointer positions. The problem is that there is nothing in the formalism to justify this assumption. We conclude that the Consistent Histories approach, contrary to what is claimed by its proponents, fails to provide a truly satisfactory resolution to the measurement problem of quantum mechanics.
15 pages