Spin 360 rotation - experiment

neworder1
Messages
64
Reaction score
0
Rotating an electron by 360 degrees causes its spinor to flip sing (\vert \psi \rangle \rightarrow -\vert \psi \rangle). Has this effect been observed experimentally (e.g. in an appropriate modification of the Stern-Gerlach experiment)?
 
Physics news on Phys.org
Hi neworder1! :smile:
neworder1 said:
Rotating an electron by 360 degrees causes its spinor to flip sing (\vert \psi \rangle \rightarrow -\vert \psi \rangle). Has this effect been observed experimentally (e.g. in an appropriate modification of the Stern-Gerlach experiment)?

Wouldn't it be easier to send it along two paths, along one of which it is rotated in a magnetic field, then join them and see how they interfere?

(I assume it's been done, but I don't know)
 
neworder1 said:
Has this effect been observed experimentally (e.g. in an appropriate modification of the Stern-Gerlach experiment)?

For electrons, I think it is difficult, and I don't know that experiment.

For neutrons, there are some experiments in which the spinning neutrons went back to the original forms when they are rotated by an angle of 4pai (not 2pai).
(H. Rauch et al. Phys.Lett. 54A (1975) 425)

But in this real world, is it really possible?

In these experiments, they rotated the neutrons around the spin axis by using " precession".
The angular frequency of the precession is

\omega = \frac{g \mu_N}{\hbar} H

So, if spin g-factor becomes half, the angular frequency becomes half and the neutrons will go back to their original when they are rotated by 2pai (not 4pai).

There are some problems about spin.
For example, the electron spin g-factor is 2, so this means that the charge and mass of one electron is unequally distributed.
And the electron is too small by scatteing experiments, so by equating the spin angular momentum to 1/2 hbar, spinning sphere speed leads to more than 100 times the speed of light.

We can experimentally measure the (spin) magnetic moment.
If spin is simple circular movement like Bohr model, angular momentum becomes hbar (not 1/2 hbar) and (spin) g-factor becomes half (2 >> 1) (due to 2 x 1/2 = 1 x 1, the magnetic moment will not change).

Which case is more natural?
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top