Proving Differentiability of f given g'(x) < 0 $\forall$ x

  • Thread starter Thread starter mathwizarddud
  • Start date Start date
  • Tags Tags
    Differentiability
mathwizarddud
Messages
25
Reaction score
0
Suppose the real valued g is defined on \mathbb{R} and g&#039;(x) &lt; 0 for every real x. Prove there's no differentiable f: R \rightarrow R such that f \circ f = g.
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top