TurtleMeister said:
What do you mean by inertial frame?
Ok, I checked Wikipedia and I don't get how my view is non-inertial. But I'll admit that I am having doubts about my view. Is it completely wrong? Or is it a matter of perspective?
Your view is non-inertial because your reference frame is accelerating. Strictly speaking, Newton's laws of motion are not valid in a non-inertial frame. To make them appear to be valid one must add fictitious forces to the mix.
There is nothing wrong
per se with working in a non-inertial frame. Suppose you want to explain some phenomenon. Whether you do your derivations from the perspective of an inertial frame or non-inertial frame in a way is irrelevant. Do the math right and both perspectives will yield the same end result. The choice is very relevant if you take into consideration the difficulty of arriving at the end result. Explaining the weather from the perspective of an accelerating and rotating reference frame (i.e., a frame fixed to the rotating Earth) is rather difficult but doable. Explaining the weather from the perspective of an inertial frame (ignoring very tiny effects, a non-rotating frame with origin at the solar system barycenter) is a lot worse than rather difficult. On the other hand, trying to explain the interactions in some remote star system from the perspective of an Earth-fixed frame, while possible, is downright stupid.
What you have done wrong is to think that because the acceleration of an object toward the Earth does depend on the object's mass somehow falsifies the equivalence principle. It doesn't. The equivalence principle now stands as one of the most precisely verified axioms in all of physics. It has been verified to about 1 part in 10
13 (see the Physics World article cited below). Three future (in development or proposed) satellite missions, MICROSCOPE (CNES), Galileo Galilei (ASI) and STEP (NASA), intend to increase this accuracy by two, four, and five orders of magnitude respectively.
References:
Relativity at the centenary, Physics World (2005), http://physicsworld.com/cws/article/print/21148
Microscope: Exploring the limits of the equivalence principle, CNES, (2008), http://www.cnes.fr/web/CNES-en/2847-microscope.php
Galileo Galilei, GG project home page,
http://eotvos.dm.unipi.it
STEP, STEP project home page,
http://einstein.stanford.edu/STEP