Introductory Functional Analysis with Applications by Kreyszig

Click For Summary
SUMMARY

The discussion centers on "Introductory Functional Analysis with Applications" by Erwin Kreyszig, which is essential for undergraduate students familiar with rigorous mathematics, including calculus and linear algebra. The book covers critical topics such as metric spaces, normed spaces, Hilbert spaces, and spectral theory, while minimizing measure theory and topology. It also includes practical applications in quantum mechanics and provides 900 problems for practice, making it a valuable resource for both mathematics and physics students.

PREREQUISITES
  • Rigorous Calculus
  • Linear Algebra
  • Proof Techniques in Mathematics
  • Basic Concepts of Metric Spaces
NEXT STEPS
  • Study the properties of Banach Spaces and their applications.
  • Explore the Hahn-Banach Theorem and its implications in functional analysis.
  • Learn about spectral theory in finite-dimensional normed spaces.
  • Investigate the applications of unbounded linear operators in quantum mechanics.
USEFUL FOR

This discussion is beneficial for undergraduate students in mathematics and physics, particularly those studying functional analysis, quantum mechanics, and anyone seeking to deepen their understanding of linear operators and their applications.

For those who have used this book

  • Lightly Recommend

    Votes: 0 0.0%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    6
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,170
Reaction score
3,327
  • Author: Erwin Kreyszig
  • Title: Introductory Functional Analysis wih Applications
  • Amazon link https://www.amazon.com/dp/0471504599/?tag=pfamazon01-20
  • Prerequisities: Being acquainted with proofs and rigorous mathematics. Rigorous Calculus and Linear algebra.
  • Level: Undergrad

Table of Contents:
Code:
[LIST]
[*] Metric Spaces
[LIST]
[*] Metric Space
[*] Further Examples of Metric Spaces
[*] Open Set, Closed Set, Neighborhood
[*] Convergence, Cauchy Sequence, Completeness
[*] Examples. Completeness Proofs
[*] Completion of Metric Spaces
[/LIST]
[*] Normed Spaces. Banach Spaces
[LIST]
[*] Vector Space
[*] Normed Space. Banach Space
[*] Further Properties of Normed Spaces
[*] Finite Dimensional Normed Spaces and Subspaces
[*] Compactness and Finite Dimension
[*] Linear Operators
[*] Bounded and Continuous Linear Operators
[*] Linear Functionals
[*] Linear Operators and Functionals on Finite Dimensional Spaces
[*] Normed Spaces of Operators. Dual Spac
[/LIST]
[*] Inner Produd Spaces. Hilbert Spaces
[LIST]
[*] Inner Product Space. Hilbert Space
[*] Further Properties of Inner Product Spaces
[*] Orthogonal Complements and Direct Surns
[*] Orthonormal Sets snd Sequences
[*] Series Related to Orthonormal Sequences and Sets
[*] Total Orthonormal Sets and Sequence
[*] Legendre, Hermite and Laguerre Polynomials
[*] Representation of Functionals on Hilbert Spaces
[*] Hilbert-Adjoint Operator
[*] Self-Adjoint, Unitary and Normal Operators
[/LIST]
[*] Fundamental Theorems for Normed and Banach Spaces
[LIST]
[*] Zorn's Lemma
[*] Hahn-Banach Theorem
[*] Hahn-Banach Theorem for Complex Vector Spaces and Normed Spaces
[*] Application to Bounded Linear Functionals on [itex]C[a, b][/itex]
[*] Adjoint Operator
[*] Reflexive Spaces
[*] Category Theorem. Uniform Boundedness Theorem
[*] Strong and Weak Convergence
[*] Convergence of Sequences of Operators and Functionals
[*] Application to Summability of Sequences
[*] Numerical Integration and Weak* Convergence
[*] Open Mapping Theorem
[*] Closed Linear Operators. Closed Graph Theorem
[/LIST]
[*] Further Applications: Banach Fixed Point Theorem
[LIST]
[*] Banach Fixed Point Theorem
[*] Application of Banach's Theorem to Linear Equations
[*] Applications of Banach's Theorem to Differential Equations
[*] Application of Banach's Theorem to Integral Equations
[/LIST]
[*] Further Applications: Approximation Theory
[LIST]
[*] Approximation in Normed Spaces
[*] Uniqueness. Strict Convexity
[*] Uniform Approximation
[*] Chebyshev Polynomials
[*] Approximation in Hilbert Space
[*] Splines
[/LIST]
[*] Spectral Theory of Linear Operators in Normed Spaces
[LIST]
[*] Spectral Theory in Finite Dimensional Normed Spaces
[*] Basic Concepts
[*] Spectral Properties of Bounded Linear Operators
[*] Further Properties of Resolvent and Spectrum
[*] Use of Complex Analysis in Spectral Theory
[*] Banach Algebras
[*] Further Properties of Banach Algebras
[/LIST]
[*] Compact Linear Operators on Normed Spaces and Their Spectrum
[LIST]
[*] Compact Linear Operators on Normed Spaces
[*] Further Properties of Compact Linear Operators
[*] Spectral Properties of Compact Linear Operators on Normed Spaces
[*] Further Spectral Properties of Compact Linear Operators
[*] Operator Equations Involving Compact Linear Operators
[*] Further Theorems of Fredholm Type
[*] Fredholm Alternative
[/LIST]
[*] Spectral Theory of Bounded Self-Adjoint Linear Operators
[LIST]
[*] Spectral Properties of Bounded SeIf-Adjoint Linear Operators
[*] Further Spectral Properties of Bounded Self-Adjoint Linear Operators
[*] Positive Operators
[*] Square Roots of a Positive Operator
[*] Projection Operators
[*] Further Properties of Projections
[*] Spectral Family
[*] Spectral Family of a Bounded Self-Adjoint Linear Operator
[*] Spectral Representation of Bounded Self-Adjoint Linear Operators
[*] Extension of the Spectral Theorem to Continuous Functions
[*] Properties of tbe Spectral Family of a Bounded Self-Adjoint Linear Operator
[/LIST]
[*] Unbounded Linear Operators in Hilbert Space
[LIST]
[*] Unbounded Linear Operators and their Hilbert-Adjoint Operators 
[*] Hilbert-Adjoint Operators, Symmetric and Self-Adjoint Linear Operators
[*] Closed Linear Operators and Closures
[*] Spectral Properties of Self-Adjoint Linear Operators
[*] Spectral Representation of Unitary Operators
[*] Spectral Representation of Self-Adjoint Linear Operators
[*] Multiplication Operator and Differentiation Operator 
[/LIST]
[*] Unbounded Linear Operaton in Quantum Mechanics
[LIST]
[*] Basic Ideas. States, Observables Position Operator
[*] Momentum Operator. Heisenberg Uncertainty Principle 
[*] Time-Independent Schrödinger Equation
[*] Hamilton Operator
[*] Time- Dependent Schrödinger Equation
[/LIST]
[*] Appendix: Some Material for Review and Reference
[LIST]
[*] Sets
[*] Mappings
[*] Families
[*] Equivalence Relations
[*] Compactness
[*] Supremum and Infimum
[*] Cauchy Convergence Criterion
[*] Groups
[/LIST]
[*] Appendix: Answers to Odd-Numbered Problems
[*] Appendix: References
[*] Index
[/LIST]
 
Last edited by a moderator:
  • Like
Likes   Reactions: Jianphys17
Physics news on Phys.org
This book is great. Measure theory & topology is kept to a minimum, and there's a chapter on quantum mechanics at the end, which would probably make it better for physics than math. oh, & 900 problems too.
 
Last edited:
  • Like
Likes   Reactions: Jianphys17

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
6K
  • Poll Poll
  • · Replies 6 ·
Replies
6
Views
11K
  • · Replies 3 ·
Replies
3
Views
2K
  • Poll Poll
  • · Replies 3 ·
Replies
3
Views
8K
  • Poll Poll
  • · Replies 3 ·
Replies
3
Views
6K
  • Poll Poll
  • · Replies 3 ·
Replies
3
Views
5K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
4K
  • Poll Poll
  • · Replies 2 ·
Replies
2
Views
7K
  • Poll Poll
  • · Replies 4 ·
Replies
4
Views
7K