Analysis What topics are covered in Real Analysis by Carothers?

AI Thread Summary
Carothers' "Real Analysis" is a comprehensive text focusing on metric space topology, function spaces, and integration, including Riemann-Stieltjes and Lebesgue integration. It is well-regarded for its clarity and detailed proofs, making it more accessible than Rudin's "Principles of Mathematical Analysis." The book emphasizes motivation and includes a wealth of exercises throughout each chapter, enhancing the learning experience. While it is suggested to be at a graduate level, some believe it is suitable for advanced undergraduates familiar with epsilon-delta concepts. Notably, the inclusion of historical accounts enriches the content, making it a standout resource for those studying real analysis. However, it does not cover differentiation or power series, indicating that it should be supplemented with other texts for a complete understanding of the subject.

For those who have used this book

  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    6
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Preface
[*] Metric Spaces
[LIST]
[*] Calculus Review
[LIST]
[*] The Real Numbers
[*] Limits and Continuity
[*] Notes and Remarks
[/LIST]
[*] Countable and Uncountable Sets
[LIST]
[*] Equivalence and Cardinality
[*] The Cantor Set
[*] Monotone Functions 
[*] Notes and Remarks
[/LIST]
[*] Metrics and Norms
[LIST]
[*] Metric Spaces
[*] Normed Vector Spaces
[*] More Inequalities
[*] Limits in Metric Spaces
[*] Notes and Remarks
[/LIST]
[*] Open Sets and Closed Sets
[LIST]
[*] Open Sets
[*] Closed Sets
[*] The Relative Metric
[*] Notes and Remarks
[/LIST]
[*] Continuity
[LIST]
[*] Continuous Functions
[*] Homeomorphisms
[*] The Space of Continuous Functions 
[*] Notes and Remarks
[/LIST]
[*] Connectedness
[LIST]
[*] Connected Sets
[*] Notes and Remarks
[/LIST]
[*] Completeness
[LIST]
[*] Totally Bounded Sets
[*] Complete Metric Spaces
[*] Fixed Points
[*] Completions
[*] Notes and Remarks
[/LIST]
[*] Compactness
[LIST]
[*] Compact Metric Spaces
[*] Uniform Continuity
[*] Equivalent Metrics
[*] Notes and Remarks
[/LIST]
[*] Category
[LIST]
[*] Discontinuous Functions
[*] The Baire Category Theorem
[*] Notes and Remarks
[/LIST]
[/LIST]
[*] Function Spaces
[LIST]
[*] Sequences of Functions
[LIST]
[*] Historical Background
[*] Pointwise and Uniform Convergence 
[*] Interchanging Limits
[*] The Space of Bounded Functions
[*] Notes and Remarks
[/LIST]
[*] The Space of Continuous Functions
[LIST]
[*] The Weierstrass Theorem
[*] Trigonometric Polynomials
[*] Infinitely Differentiable Functions
[*] Equicontinuity
[*] Continuity and Category
[*] Notes and Remarks
[/LIST]
[*] The Stone-Weierstrass Theorem
[LIST]
[*] Algebras and Lattices
[*] The Stone-Weierstrass Theorem
[*] Notes and Remarks
[/LIST]
[*] Functions of Bounded Variation
[LIST]
[*] Functions of Bounded Variation
[*] Helly's First Theorem
[*] Notes and Remarks
[/LIST]
[*] The Riemann-Stieltjes Integral
[LIST]
[*] Weights and Measures
[*] The Riemann-Stieltjes Integral
[*] The Space of Integrable Functions
[*] Integrators of Bounded Variation
[*] The Riemann Integral
[*] The Riesz Representation Theorem
[*] Other Definitions, Other Properties
[*] Notes and Remarks
[/LIST]
[*] Fourier Series
[LIST]
[*] Preliminaries
[*] Dirichlet's Formula
[*] Fejer's Theorem
[*] Complex Fourier Series
[*] Notes and Remarks
[/LIST]
[/LIST]
[*] Lebesgue Measure and Integration
[LIST] 
[*] Lebesgue Measure
[LIST]
[*] The Problem of Measure
[*] Lebesgue Outer Measure
[*] Riemann Integrability
[*] Measurable Sets
[*] The Structure of Measurable Sets
[*] A Nonmeasurable Set 
[*] Other Definitions
[*] Notes and Remarks
[/LIST]
[*] Measurable Functions
[LIST]
[*] Measurable Functions
[*] Extended Real-Valued Functions
[*] Sequences of Measurable Functions
[*] Approximation of Measurable Functions
[*] Notes and Remarks
[/LIST]
[*] The Lebesgue Integral
[LIST]
[*] Simple Functions
[*] Nonnegative Functions
[*] The General Case
[*] Lebesgue's Dominated Convergence Theorem
[*] Approximation of Integrable Functions
[*] Notes and Remarks
[/LIST]
[*] Additional Topics 
[LIST]
[*] Convergence in Measure
[*] The [itex]L_p[/itex] Spaces
[*] Approximation of [itex]L_p[/itex] Functions 
[*] More on Fourier Series
[*] Notes and Remarks
[/LIST]
[*] Differentiation
[LIST]
[*] Lebesgue's Differentiation Theorem
[*] Absolute Continuity
[*] Notes and Remarks
[/LIST]
[/LIST]
[*] References
[*] Symbol Index
[*] Topic Index 
[/LIST]
 
Last edited by a moderator:
  • Like
Likes atyy, Ahmad Kishki and theoristo
Physics news on Phys.org
This is a very nice book on metric space topology, function spaces, and integration (both Riemann-Stieltjes and Lebesgue). It is exceptionally well written and is at about the same level of sophistication as Rudin's Principles of Mathematical Analysis, without being so terse and austere. Indeed, this book has quite a lively and detailed discussion, providing a great deal of motivation that is largely absent from Rudin. The proofs are also more detailed. The emphasis is very much on the three topics I listed above: it doesn't contain anything about differentiation, power series, and other standard topics, so this cannot be one's only real analysis book. But for what it does cover, it's excellent.
 
  • Like
Likes atyy
I think I'd disagree with it being a graduate-level book. I think any undergraduate who's seen epsilon-delta before should be able to easily handle it.

I love how Carothers intersperses exercises throughout the chapter, to guide the student in learning the material. It may be the best introduction to real analysis I've seen.
 
  • Like
Likes atyy
Let's not forget about the awesome historical accounts and the insane amount of exercises. Carothers has a truly poetic way of writing.
 
  • Like
Likes atyy
Yes, the historical accounts are another great feature of the book.
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...

Similar threads

Replies
24
Views
4K
Replies
2
Views
2K
  • Poll Poll
Replies
4
Views
7K
  • Poll Poll
Replies
1
Views
6K
Replies
5
Views
6K
Replies
22
Views
16K
Replies
6
Views
2K
  • Poll Poll
Replies
1
Views
5K
Replies
11
Views
3K
Replies
1
Views
4K
Back
Top