This quarter's poll includes several alternates to and new variants of Loop gravity: work bridging between nonperturbative QG and particle theory, also at the bottom of the list a throwback to perturbative QG that is still background independent (!), then there's a derivation of "arrow of time" from Shape, the K-S variant of Loop, a Teleparallel hybrid with Loop, matter in Asymptotic Safe QG, and Hawking radiation from the Loop black hole. Basically this time the poll includes a lot of crossing of specialty lines.
http://arxiv.org/abs/1312.7273
On How Neutrino Protects the Axion
Gia Dvali, Sarah Folkerts, Andre Franca
(Submitted on 27 Dec 2013)
We show how the neutrino can sacrifice itself to quantum gravity and save the axion solution to the strong-CP problem. This mechanism puts an upper bound on the lightest neutrino mass.
9 pages
http://arxiv.org/abs/1312.3657
Structural aspects of loop quantum gravity and loop quantum cosmology from an algebraic perspective
Alexander Stottmeister, Thomas Thiemann
(Submitted on 12 Dec 2013)
We comment on structural properties of the algebras
ALQG/LQC underlying loop quantum gravity and loop quantum cosmology, especially the representation theory, relating the appearance of the (dynamically induced) superselection structure (θ-sectors) in loop quantum cosmology to recently proposed representations with non-degenerate background geometries in loop quantum gravity with Abelian structure group. To this end, we review and employ the concept of extending a given (observable) algebra with possibly non-trivial centre to a (charged) field algebra with (global) gauge group.We also interpret the results in terms of the geometry of the structure group G. Furthermore, we analyze the Koslowski-Sahlmann representations with non-degenerate background in the case of a non-Abelian structure group. We find that these representations can be interpreted from two different, though related, points view: Either, the standard algebras of loop quantum gravity need to be extended by a (possibly) central term, or the elementary flux vector fields need to acquire a shift related to the (classical) background to make these representations well-defined. Both perspectives are linked by the fact that the background shift is not an automorphism of the algebras, but rather an affine transformation. Finally, we show how similar algebraic mechanisms, which are used to explain the breaking of chiral symmetry and the occurrence of θ-vacua in quantum field theory, extend to loop quantum gravity. Thus, opening a path for the discussion of these questions in loop quantum gravity.
45 pages
http://arxiv.org/abs/1312.3595
Hawking radiation from a spherical loop quantum gravity black hole
Rodolfo Gambini, Jorge Pullin
(Submitted on 12 Dec 2013)
We introduce quantum field theory on quantum space-times techniques to characterize the quantum vacua as a first step towards studying black hole evaporation in spherical symmetry in loop quantum gravity and compute the Hawking radiation. We use as quantum space time the recently introduced exact solution of the quantum Einstein equations in vacuum with spherical symmetry and consider a spherically symmetric test scalar field propagating on it. The use of loop quantum gravity techniques in the background space-time naturally regularizes the matter content, solving one of the main obstacles to back reaction calculations in more traditional treatments. The discreteness of area leads to modifications of the quantum vacua, eliminating the trans-Planckian modes close to the horizon, which in turn eliminates all singularities from physical quantities, like the expectation value of the stress energy tensor. Apart from this, the Boulware, Hartle--Hawking and Unruh vacua differ little from the treatment on a classical space-time. The asymptotic modes near scri are reproduced very well. We show that the Hawking radiation can be computed, leading to an expression similar to the conventional one but with a high frequency cutoff. Since many of the conclusions concern asymptotic behavior, where the spherical mode of the field behaves in a similar way as higher multipole modes do, the results can be readily generalized to non spherically symmetric fields.
13 pages
http://arxiv.org/abs/1312.3253
General Relativity from a Thermodynamic Perspective
Thanu Padmanabhan
(Submitted on 11 Dec 2013)
Several recent results suggest that gravity is an emergent phenomenon with its field equations having the same status as, say, the equations of fluid dynamics. I describe several additional results, supporting this paradigm and connecting the gravitational dynamics in a bulk region of space with a thermodynamic description in the boundary of that region:
(1) The Noether charge contained in a bulk region, associated with a specific time evolution vector field, has a direct thermodynamic interpretation as the gravitational heat content of the boundary surface.
(2) This result, in turn, shows that all static spacetimes maintain holographic equipartition; in these spacetimes, the number of degrees of freedom in the boundary is equal to the number of degrees of freedom in the bulk.
(3) In a general, evolving spacetime, the rate of change of gravitational momentum is related to the difference between the number of bulk and boundary degrees of freedom. It is this departure from the holographic equipartition which drives the time evolution of the spacetime.
(4) When the equations of motion hold, the (naturally defined) total energy of the gravity plus matter within a bulk region, will be equal to the boundary heat content.
(5) After motivating the need for an alternate description of gravity (if we have to solve the cosmological constant problem), I describe a thermodynamic variational principle based on null surfaces to achieve this goal. The concept of gravitational heat density of the null surfaces arises naturally from the Noether charge associated with the null congruence. The null surface variational principle, in fact, extremises the total heat content of the matter plus gravity system. Several variations on this theme and implications are described.
53 pages
http://arxiv.org/abs/1312.1538
Gravitational Energy, Local Holography and Non-equilibrium Thermodynamics
Laurent Freidel
(Submitted on 5 Dec 2013)
We study the properties of gravitational system in finite regions bounded by gravitational screens. We present the detail construction of the total energy of such regions and of the energy and momentum balance equations due to the flow of matter and gravitational radiation through the screen. We establish that the gravitational screen possesses analogs of surface tension, internal energy and viscous stress tensor, while the conservations are analogs of non-equilibrium balance equations for a viscous system. This gives a precise correspondence between gravity in finite regions and non-equilibrium thermodynamics.
41 pages, 3 figures
http://arxiv.org/abs/arXiv:1312.0905
Quantum group spin nets: refinement limit and relation to spin foams
Bianca Dittrich, Mercedes Martin-Benito, Sebastian Steinhaus
(Submitted on 3 Dec 2013)
So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so called spin nets, for quantum groups SU(2)
k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse graining procedure, we find a vast non-trivial fixed point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed point intertwiners, inspired by Reisenberger's construction principle [1] and the recent work [2], as the initial parametrization. In this new parametrization fine tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.
30+5 pages, many figures
http://arxiv.org/abs/1311.7565
Time evolution as refining, coarse graining and entangling
Bianca Dittrich, Sebastian Steinhaus
(Submitted on 29 Nov 2013)
We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows to construct a (cylindrically) consistent continuum limit of the theory.
33 pages, 9 figures
http://arxiv.org/abs/arXiv:1311.6117
The Koslowski-Sahlmann representation: Gauge and diffeomorphism invariance
Miguel Campiglia, Madhavan Varadarajan
(Submitted on 24 Nov 2013)
The discrete spatial geometry underlying Loop Quantum Gravity (LQG) is degenerate almost everywhere. This is at apparent odds with the non-degeneracy of asymptotically flat metrics near spatial infinity. Koslowski generalised the LQG representation so as to describe states labelled by smooth non-degenerate triad fields. His representation was further studied by Sahlmann with a view to imposing gauge and spatial diffeomorphism invariance through group averaging methods. Motivated by the desire to model asymptotically flat quantum geometry by states with triad labels which are non-degenerate at infinity but not necessarily so in the interior, we initiate a generalisation of Sahlmann's considerations to triads of varying degeneracy. In doing so, we include delicate phase contributions to the averaging procedure which are crucial for the correct implementation of the gauge and diffeomorphism constraints, and whose existence can be traced to the background exponential functions recently constructed by one of us. Our treatment emphasizes the role of symmetries of quantum states in the averaging procedure. Semianalyticity, influential in the proofs of the beautiful uniqueness results for LQG, plays a key role in our considerations. As a by product, we re-derive the group averaging map for standard LQG, highlighting the role of state symmetries and explicitly exhibiting the essential uniqueness of its specification.
45 pages.
http://arxiv.org/abs/1311.5325
Note on the super inflation in loop quantum cosmology
Kui Xiao, Xiao-Kai He, Jian-Yang Zhu
(Submitted on 21 Nov 2013)
Phenomenological effect of the super-inflation in loop quantum cosmology (LQC) is discussed. We investigate the case that the Universe is filled with the interacting field between massive scalar field and radiation. Considering the damping coefficient Γ as a constant, the changes of the scale factor during super-inflation with four different initial conditions are discussed, and we find that the changes of the scale factor depend on the initial values of energy density of the scalar field and radiation at the bounce point. But no matter which initial condition is chosen, the radiation always dominated at the late time. Moreover, we investigate whether the super-inflation can provide enough e-folding number. For the super-inflation starts from the quantum bounce point, the initial value of Hubble parameter H(t
i)∼0, then it is possible to solve the flatness problem and horizon problem. As an example, following the method of Amoros to calculate particle horizon on the condition that the radiation dominated at bounce point, we find that the Universe has had enough time to be homogeneous and isotopic.
9 pages, 4 figures.
Physics Letters B
http://arxiv.org/abs/1311.3279
Null twisted geometries
Simone Speziale, Mingyi Zhang
(Submitted on 13 Nov 2013)
We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalism are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is naturally decomposed into a conformal metric and scale factors, forming locally conjugate pairs. Proper action-angle variables on the gauge-invariant phase space are described by the eigenvectors of the Laplacian of the dual graph. We also identify the variables of the phase space amenable to characterize the extrinsic geometry of the foliation. Finally, we quantise the phase space and its algebra using Dirac's algorithm, obtaining a notion of spin networks for null hypersurfaces. Such spin networks are labelled by SO(2) quantum numbers, and are embedded non-trivially in the unitary, infinite-dimensional irreducible representations of the Lorentz group.
22 pages, 3 figures
http://arxiv.org/abs/1311.2898
Matter matters in asymptotically safe quantum gravity
Pietro Donà, Astrid Eichhorn, Roberto Percacci
(Submitted on 12 Nov 2013)
We investigate the compatibility of minimally coupled scalar, fermion and gauge fields with asymptotically safe quantum gravity, using nonperturbative functional Renormalization Group methods. We study d=4,5 and 6 dimensions and within certain approximations find that for a given number of gauge fields there is a maximal number of scalar and fermion degrees of freedom compatible with an interacting fixed point at positive Newton coupling. The bounds impose severe constraints on grand unification with fundamental Higgs scalars. Supersymmetry and universal extra dimensions are also generally disfavored. The standard model and its extensions accommodating right-handed neutrinos, the axion and dark-matter models with a single scalar are compatible with a fixed point.
22 pages, 18 figures, 4 tables
http://arxiv.org/abs/1311.0186
Twistor relative locality
Lee Smolin
(Submitted on 1 Nov 2013)
We present a version of relative locality based on the geometry of twistor space. This can also be thought of as a new kind of deformation of twistor theory based on the construction of a bundle of twistor spaces over momentum space. Locality in space-time is emergent and is deformed in a precise way when a connection on that bundle is non-flat. This gives a precise and controlled meaning to Penrose's hypothesis that quantum gravity effects will deform twistor space in such a way as to maintain causality and relativistic invariance while weakening the notion that interactions take place at points in spacetime.
10 pages
http://arxiv.org/abs/1311.0054
Relative information at the foundation of physics
Carlo Rovelli
(Submitted on 31 Oct 2013)
Shannon's notion of relative information between two physical systems can function as foundation for statistical mechanics and quantum mechanics, without referring to subjectivism or idealism. It can also represent a key missing element in the foundation of the naturalistic picture of the world, providing the conceptual tool for dealing with its apparent limitations. I comment on the relation between these ideas and Democritus.
3 pages. Second prize in the 2013 FQXi contest
"It From Bit or Bit From It?"
http://arxiv.org/abs/1310.7786
Group field theory as the 2nd quantization of Loop Quantum Gravity
Daniele Oriti
(Submitted on 29 Oct 2013)
We construct a 2nd quantized reformulation of canonical Loop Quantum Gravity at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the Group Field Theory formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.
23 pages, 5 figures
http://arxiv.org/abs/1310.6728
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
Parampreet Singh, Edward Wilson-Ewing
(Submitted on 24 Oct 2013)
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaitre-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaitre-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
34 pages
http://arxiv.org/abs/1310.5167
A Gravitational Origin of the Arrows of Time
Julian Barbour, Tim Koslowski, Flavio Mercati
(Submitted on 18 Oct 2013)
The only widely accepted explanation for the various arrows of time that everywhere and at all epochs point in the same direction is the 'past hypothesis': the Universe had a very special low-entropy initial state. We present the first evidence for an alternative conjecture: the arrows exist in all solutions of the gravitational law that governs the Universe and arise because the space of its true degrees of freedom (shape space) is asymmetric. We prove our conjecture for arrows of complexity and information in the Newtonian N-body problem. Except for a set of measure zero, all of its solutions for non-negative energy divide at a uniquely defined point into two halves. In each a well-defined measure of complexity fluctuates but grows irreversibly between rising bounds from that point. Structures that store dynamical information are created as the complexity grows. Recognition of the division is a key novelty of our approach. Each solution can be viewed as having a single past and two distinct futures emerging from it. Any internal observer must be in one half of the solution and will only be aware of one past and one future. The 'paradox' of a time-symmetric law that leads to observationally irreversible behaviour is fully resolved. General Relativity shares enough architectonic structure with the N-body problem for us to prove the existence of analogous complexity arrows in the vacuum Bianchi IX model. In the absence of non-trivial solutions with matter we cannot prove that arrows of dynamical information will arise in GR, though they have in our Universe. Finally, we indicate how the other arrows of time could arise.
44+14 pages, 8 figures, 1 table
http://arxiv.org/abs/1310.3362
Deformation Operators of Spin Networks and Coarse-Graining
Etera R. Livine
(Submitted on 12 Oct 2013)
In the context of loop quantum gravity, quantum states of geometry are mathematically defined as spin networks living on graphs embedded in the canonical space-like hypersurface. In the effort to study the renormalisation flow of loop gravity, a necessary step is to understand the coarse-graining of these states in order to describe their relevant structure at various scales. Using the spinor network formalism to describe the phase space of loop gravity on a given graph, we focus on a bounded (connected) region of the graph and coarse-grain it to a single vertex using a gauge-fixing procedure. We discuss the ambiguities in the gauge-fixing procedure and their consequences for coarse-graining spin(or) networks. This allows to define the boundary deformations of that region in a gauge-invariant fashion and to identify the area preserving deformations as U(N) transformations similarly to the already well-studied case of a single intertwiner. The novelty is that the closure constraint is now relaxed and the closure defect interpreted as a local measure of the curvature inside the coarse-grained region. It is nevertheless possible to cancel the closure defect by a Lorentz boost. We further identify a Lorentz-invariant observable related to the area and closure defect, which we name "rest area". Its physical meaning remains an open issue.
24 pages
http://arxiv.org/abs/1310.2174
Radiative corrections to the EPRL-FK spinfoam graviton
Aldo Riello
(Submitted on 8 Oct 2013)
I study the corrections engendered by the insertion of a "melon" graph in the bulk of the first-order spinfoam used for the graviton propagator. I find that these corrections are highly non-trivial and, in particular, that they concern those terms which disappear in the Bojowald-Bianchi-Magliaro-Perini limit of vanishing Barbero-Immirzi parameter at fixed area. This fact is the first realization of the often cited idea that the spinfoam amplitude receives higher order corrections under the refinement of the underlying two-complex.
13 pages, 4 figures
http://arxiv.org/abs/arXiv:1309.0352
Cosmological perturbations in teleparallel Loop Quantum Cosmology
Jaime Haro
(Submitted on 2 Sep 2013)
Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator.
In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation.
In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.
18 pages.
Journal of Cosmology and Astroparticle Physics
http://arxiv.org/abs/1306.1058
Quantum gravity from the point of view of locally covariant quantum field theory
Romeo Brunetti, Klaus Fredenhagen, Katarzyna Rejzner
(Submitted on 5 Jun 2013)
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.
51 pages