Let (N, s(n), 0) be a Peano space. That is, N=\{1,2,3,\dots \} is a set in which http://en.wikipedia.org/wiki/Peano_arithmetic" can be used.
We can then define:
0=\varnothing, 1=\{0\}, 2=\{0,1\},\dots \implies n=\{0,1,2,\dots ,n-2,n-1\}
s(a)=a\cup \{a\}\implies s(a)=a+1
From here we...